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Study of the problem P|pmtn, rj |f
m identical parallel machines P

n preemptives jobs, with release date rj such that
r1 ≤ r2 ≤ · · · ≤ rn
Regular objective function f (i.e. non-decreasing with
Cj ’s)
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Definition

A schedule is said to be Permutation Flow Shop-like
(PFS − like) if :
(1) no machine processes more than one piece of a each job,
(2) the scheduling order on the different machines is the same.
(3) it is non-delay and vertically ordered,
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Theorem 1

If P|pmtn, rj |f has a solution S with completion times
C1 ≤ C2 ≤ · · · ≤ Cn, there exists a PFS − like solution S ′

such that C ′
1 ≤ C ′

2 ≤ · · · ≤ C ′
n and C ′

j ≤ Cj for 1 ≤ j ≤ n.

Proof by induction on the job number j :

- A(j) : If i and i ′ are two jobs such that 1 ≤ i ≤ j and i < i ′ no
machine processes a piece of job i ′ before a piece of job i .

- B(j) : No machine processes more than one piece of job i , for

1 ≤ i ≤ j .
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Sketch of the proof - Base step
A(1) : no machine processes a piece of i ′ > 1 before a piece of 1.
B(1) : No machine processes more than one piece of job 1.

- A(1) =⇒ B(1)

- !A(1) : ∃k > 1 on M1 before a piece of 1
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Theorem 2

P|pmtn, rj |f can be solved in polynomial time if f is a convex
piecewise continuous linear function computable in polynomial
time and if there exists an optimal solution such that
C ∗

1 ≤ C ∗
2 ≤ · · · ≤ C ∗

n .

Proof : write a LP with variables tm
j (resp. pm

j ) for starting time

(resp. processing time) of job j on machine m.

How to find the order ?
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Agreeability : (r+
j , p+

j , d+
j , w−

j ) ≡ rj ր , pj ր dj ր et wj ց
Ex : rj ,pj = p,dj = d , wj = 1 is agreeable

Theorem 3

The following problems are solvable in polynomial time :

1 P|pmtn, (r+
j , p+

j )|
∑

fj , when fj ’s are regular functions
and fj − fk is non-decreasing if j < k.

2 P|pmtn, (r+
j , p+

j )|max fj , when fj ’s are regular functions
and fj − fk is non-negative if j < k.

3 P|pmtn, (r+
j , p+

j , w−
j ), dj = d |

∑
wjUj .

Proof : simple exchange argument
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