Refining the boundary between \mathcal{P} and \mathcal{NP} for identical machine scheduling problems with preemption and release dates

<u>Damien Prot¹</u>, Odile Bellenguez-Morineau¹, Chams Lahlou¹

¹ Ecole des Mines de Nantes

damien.prot@mines-nantes.fr

Paris, le 15 mars 2012

Study of the problem $P|pmtn, r_j|f$

- m identical parallel machines P
- *n* preemptives jobs, with release date r_j such that

$$r_1 \leq r_2 \leq \cdots \leq r_n$$

• Regular objective function *f* (i.e. non-decreasing with *C_j*'s)

D. Prot, O. Bellenguez-Morineau and C. Lahlou, *Refining the boundary between P and NP for identical machine scheduling problems with preemption and release dates,* Journal of Scheduling, submitted, 2011

Definition

A schedule is said to be Permutation Flow Shop-like (PFS - like) if :

(1) no machine processes more than one piece of a each job,(2) the scheduling order on the different machines is the same.(3) it is non-delay and vertically ordered,

3/14

Definitions Dominant structure Polynomial cases

Theorem 1

If $P|pmtn, r_j|f$ has a solution S with completion times $C_1 \leq C_2 \leq \cdots \leq C_n$, there exists a PFS - like solution S' such that $C'_1 \leq C'_2 \leq \cdots \leq C'_n$ and $C'_j \leq C_j$ for $1 \leq j \leq n$.

Proof by induction on the job number j:

- A(j) : If *i* and *i'* are two jobs such that $1 \le i \le j$ and i < i' no machine processes a piece of job *i'* before a piece of job *i*.

- B(j) : No machine processes more than one piece of job i, for $1 \leq i \leq j$.

Definitions Dominant structure Polynomial cases

Theorem 1

If $P|pmtn, r_j|f$ has a solution S with completion times $C_1 \leq C_2 \leq \cdots \leq C_n$, there exists a PFS - like solution S' such that $C'_1 \leq C'_2 \leq \cdots \leq C'_n$ and $C'_j \leq C_j$ for $1 \leq j \leq n$.

Proof by induction on the job number j:

- A(j) : If *i* and *i'* are two jobs such that $1 \le i \le j$ and i < i' no machine processes a piece of job *i'* before a piece of job *i*.

- B(j) : No machine processes more than one piece of job i, for $1 \le i \le j$.

Sketch of the proof - Base step

- A(1): no machine processes a piece of i' > 1 before a piece of 1.
- B(1): No machine processes more than one piece of job 1.

$-A(1) \implies B(1)$

- $|A(1): \exists k > 1$ on M_1 before a piece of 1

Sketch of the proof - Base step

A(1): no machine processes a piece of i' > 1 before a piece of 1.

- B(1): No machine processes more than one piece of job 1.
- $-A(1) \implies B(1)$
- $|A(1): \exists k > 1$ on M_1 before a piece of 1

Sketch of the proof - Base step

A(1): no machine processes a piece of i' > 1 before a piece of 1.

B(1): No machine processes more than one piece of job 1.

- $A(1) \implies B(1)$
- !A(1) : $\exists k > 1$ on M_1 before a piece of 1

Sketch of the proof - Induction step

- $-A(j) \implies B(j)$
- $|A(j) : \exists k > j$ on M_q before a piece of j

Sketch of the proof - Induction step

- $A(j) \implies B(j)$

- $|A(j) : \exists k > j$ on M_q before a piece of j

Sketch of the proof - Induction step

$$-A(j) \implies B(j)$$

- $|A(j) : \exists k > j$ on M_q before a piece of j

Definitions Dominant structure Polynomial cases

Theorem 1

If $P|pmtn, r_j|f$ has a solution S with completion times $C_1 \leq C_2 \leq \cdots \leq C_n$, there exists a PFS - like solution S' such that $C'_1 \leq C'_2 \leq \cdots \leq C'_n$ and $C'_j \leq C_j$ for $1 \leq j \leq n$.

Corollary

PFS-like schedules are dominant for *P*|*pmtn*|*f*.

Definitions Dominant structure Polynomial cases

Theorem 1

If $P|pmtn, r_j|f$ has a solution S with completion times $C_1 \leq C_2 \leq \cdots \leq C_n$, there exists a PFS - like solution S' such that $C'_1 \leq C'_2 \leq \cdots \leq C'_n$ and $C'_j \leq C_j$ for $1 \leq j \leq n$.

Corollary

PFS-like schedules are dominant for P|pmtn|f.

 $P|pmtn, r_j|f$ can be solved in polynomial time if f is a convex piecewise continuous linear function computable in polynomial time and if there exists an optimal solution such that $C_1^* \leq C_2^* \leq \cdots \leq C_n^*$.

Proof : write a LP with variables t_j^m (resp. p_j^m) for starting time (resp. processing time) of job j on machine m.

How to find the order?

 $P|pmtn, r_j|f$ can be solved in polynomial time if f is a convex piecewise continuous linear function computable in polynomial time and if there exists an optimal solution such that $C_1^* \leq C_2^* \leq \cdots \leq C_n^*$.

Proof : write a LP with variables t_j^m (resp. p_j^m) for starting time (resp. processing time) of job *j* on machine *m*.

How to find the order?

 $P|pmtn, r_j|f$ can be solved in polynomial time if f is a convex piecewise continuous linear function computable in polynomial time and if there exists an optimal solution such that $C_1^* \leq C_2^* \leq \cdots \leq C_n^*$.

Proof : write a LP with variables t_j^m (resp. p_j^m) for starting time (resp. processing time) of job j on machine m.

How to find the order?

イロト イヨト イヨト イヨト 二油

Agreeability :
$$(r_j^+, p_j^+, d_j^+, w_j^-) \equiv r_j \nearrow$$
, $p_j \nearrow d_j \nearrow$ et $w_j \searrow$
Ex : $r_j, p_j = p, d_j = d$, $w_j = 1$ is agreeable

The following problems are solvable in polynomial time :

- $P|pmtn, (r_j^+, p_j^+)| \sum f_j$, when f_j 's are regular functions and $f_j - f_k$ is non-decreasing if j < k.
- 2 $P|pmtn, (r_j^+, p_j^+)| \max f_j$, when f_j 's are regular functions and $f_j - f_k$ is non-negative if j < k.
- 3 $P|pmtn, (r_j^+, p_j^+, w_j^-), d_j = d|\sum w_j U_j.$

Proof : simple exchange argument

Agreeability :
$$(r_j^+, p_j^+, d_j^+, w_j^-) \equiv r_j \nearrow$$
, $p_j \nearrow d_j \nearrow$ et $w_j \searrow$
Ex : $r_j, p_j = p, d_j = d$, $w_j = 1$ is agreeable

The following problems are solvable in polynomial time :

- $P|pmtn, (r_j^+, p_j^+)| \sum f_j$, when f_j 's are regular functions and $f_j - f_k$ is non-decreasing if j < k.
- 2 $P|pmtn, (r_j^+, p_j^+)| \max f_j$, when f_j 's are regular functions and $f_j - f_k$ is non-negative if j < k.
- **3** $P|pmtn, (r_j^+, p_j^+, w_j^-), d_j = d|\sum w_j U_j.$

Proof : simple exchange argument

Agreeability :
$$(r_j^+, p_j^+, d_j^+, w_j^-) \equiv r_j \nearrow$$
, $p_j \nearrow d_j \nearrow$ et $w_j \searrow$
Ex : $r_j, p_j = p, d_j = d$, $w_j = 1$ is agreeable

The following problems are solvable in polynomial time :

- $P|pmtn, (r_j^+, p_j^+)| \sum f_j$, when f_j 's are regular functions and $f_j - f_k$ is non-decreasing if j < k.
- 2 $P|pmtn, (r_j^+, p_j^+)| \max f_j$, when f_j 's are regular functions and $f_j - f_k$ is non-negative if j < k.
- **③** *P*|*pmtn*, (r_j^+, p_j^+, w_j^-) , $d_j = d | ∑ w_j U_j$.

Proof : simple exchange argument

Classification of problems $P|pmtn, r_j| \sum w_j T_j$. "P|pmtn," is omitted.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Classification of problems $P|pmtn, r_j| \sum w_j T_j$. "P|pmtn," is omitted.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Classification of problems $P|pmtn, r_j| \sum w_j T_j$. "P|pmtn," is omitted.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Classification of problems $P|pmtn, r_j| \sum w_j U_j$. "P|pmtn," is omitted.

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Refining the boundary between \mathcal{P} and \mathcal{NP} for identical machine scheduling problems with preemption and release dates

<u>Damien Prot¹</u>, Odile Bellenguez-Morineau¹, Chams Lahlou¹

¹ Ecole des Mines de Nantes

damien.prot@mines-nantes.fr

Paris, le 15 mars 2012