Refining the boundary between \mathcal{P} and $\mathcal{N} \mathcal{P}$ for identical machine scheduling problems with preemption and release dates

Damien Prot ${ }^{1}$, Odile Bellenguez-Morineau ${ }^{1}$, Chams Lahlou ${ }^{1}$
${ }^{1}$ Ecole des Mines de Nantes
damien.prot@mines-nantes.fr

Study of the problem $P\left|p m t n, r_{j}\right| f$

- m identical parallel machines P
- n preemptives jobs, with release date r_{j} such that

$$
r_{1} \leq r_{2} \leq \cdots \leq r_{n}
$$

- Regular objective function f (i.e. non-decreasing with C_{j} 's)
$M_{3} 7$

M_{2}	8	8

D. Prot, O. Bellenguez-Morineau and C. Lahlou, Refining the boundary between P and NP for identical machine scheduling problems with preemption and release dates, Journal of Scheduling, submitted, 2011

Definition

A schedule is said to be Permutation Flow Shop-like (PFS - like) if :
(1) no machine processes more than one piece of a each job,
(2) the scheduling order on the different machines is the same.
(3) it is non-delay and vertically ordered,

M_{2}	6	6	7	8	

M_{1}	1	2	3	4	5	6	7	8	9
	r_{1}	r_{2}	r_{4}	r_{6}		r_{8}	r_{9}	r_{10}	

Theorem 1

If $P\left|p m t n, r_{j}\right| f$ has a solution S with completion times $C_{1} \leq C_{2} \leq \cdots \leq C_{n}$, there exists a PFS - like solution S^{\prime} such that $C_{1}^{\prime} \leq C_{2}^{\prime} \leq \cdots \leq C_{n}^{\prime}$ and $C_{j}^{\prime} \leq C_{j}$ for $1 \leq j \leq n$.

Theorem 1

If $P\left|p m t n, r_{j}\right| f$ has a solution S with completion times $C_{1} \leq C_{2} \leq \cdots \leq C_{n}$, there exists a PFS - like solution S^{\prime} such that $C_{1}^{\prime} \leq C_{2}^{\prime} \leq \cdots \leq C_{n}^{\prime}$ and $C_{j}^{\prime} \leq C_{j}$ for $1 \leq j \leq n$.

Proof by induction on the job number j :

- $A(j)$: If i and i^{\prime} are two jobs such that $1 \leq i \leq j$ and $i<i^{\prime}$ no machine processes a piece of job i^{\prime} before a piece of job i.
- $B(j)$: No machine processes more than one piece of job i, for $1 \leq i \leq j$.

Sketch of the proof - Base step $A(1)$: no machine processes a piece of $i^{\prime}>1$ before a piece of 1 . $B(1)$: No machine processes more than one piece of job 1.

Sketch of the proof - Base step $A(1)$: no machine processes a piece of $i^{\prime}>1$ before a piece of 1 . $B(1)$: No machine processes more than one piece of job 1.

- $A(1) \Longrightarrow B(1)$

Sketch of the proof - Base step $A(1)$: no machine processes a piece of $i^{\prime}>1$ before a piece of 1 .
$B(1)$: No machine processes more than one piece of job 1 .

- $A(1) \Longrightarrow B(1)$
- ! $A(1): \exists k>1$ on M_{1} before a piece of 1

Sketch of the proof - Induction step

Sketch of the proof - Induction step
$-A(j) \Longrightarrow B(j)$

Sketch of the proof - Induction step

- $A(j) \Longrightarrow B(j)$
$-!A(j): \exists k>j$ on M_{q} before a piece of j

Theorem 1

If $P\left|p m t n, r_{j}\right| f$ has a solution S with completion times $C_{1} \leq C_{2} \leq \cdots \leq C_{n}$, there exists a PFS - like solution S^{\prime} such that $C_{1}^{\prime} \leq C_{2}^{\prime} \leq \cdots \leq C_{n}^{\prime}$ and $C_{j}^{\prime} \leq C_{j}$ for $1 \leq j \leq n$.

Theorem 1

If $P\left|p m t n, r_{j}\right| f$ has a solution S with completion times $C_{1} \leq C_{2} \leq \cdots \leq C_{n}$, there exists a PFS - like solution S^{\prime} such that $C_{1}^{\prime} \leq C_{2}^{\prime} \leq \cdots \leq C_{n}^{\prime}$ and $C_{j}^{\prime} \leq C_{j}$ for $1 \leq j \leq n$.

Corollary

PFS-like schedules are dominant for $P|p m t n| f$.

Theorem 2

$P\left|p m t n, r_{j}\right| f$ can be solved in polynomial time if f is a convex piecewise continuous linear function computable in polynomial time and if there exists an optimal solution such that $C_{1}^{*} \leq C_{2}^{*} \leq \cdots \leq C_{n}^{*}$.

Theorem 2

$P\left|p m t n, r_{j}\right| f$ can be solved in polynomial time if f is a convex piecewise continuous linear function computable in polynomial time and if there exists an optimal solution such that $C_{1}^{*} \leq C_{2}^{*} \leq \cdots \leq C_{n}^{*}$.

Proof : write a LP with variables t_{j}^{m} (resp. p_{j}^{m}) for starting time (resp. processing time) of job j on machine m.

Theorem 2

$P\left|p m t n, r_{j}\right| f$ can be solved in polynomial time if f is a convex piecewise continuous linear function computable in polynomial time and if there exists an optimal solution such that $C_{1}^{*} \leq C_{2}^{*} \leq \cdots \leq C_{n}^{*}$.

Proof : write a LP with variables t_{j}^{m} (resp. p_{j}^{m}) for starting time (resp. processing time) of job j on machine m.

How to find the order?

Agreeability: $\left(r_{j}^{+}, p_{j}^{+}, d_{j}^{+}, w_{j}^{-}\right) \equiv r_{j} \nearrow, p_{j} \nearrow d_{j} \nearrow$ et $w_{j} \searrow$
 $\mathrm{Ex}: r_{j}, p_{j}=p, d_{j}=d, w_{j}=1$ is agreeable

Agreeability : $\left(r_{j}^{+}, p_{j}^{+}, d_{j}^{+}, w_{j}^{-}\right) \equiv r_{j} \nearrow, p_{j} \nearrow d_{j} \nearrow$ et w_{j} $\mathrm{Ex}: r_{j}, p_{j}=p, d_{j}=d, w_{j}=1$ is agreeable

Theorem 3

The following problems are solvable in polynomial time :
(1) $P\left|p m t n,\left(r_{j}^{+}, p_{j}^{+}\right)\right| \sum f_{j}$, when f_{j}^{\prime} 's are regular functions and $f_{j}-f_{k}$ is non-decreasing if $j<k$.
(2) $P\left|p m t n,\left(r_{j}^{+}, p_{j}^{+}\right)\right| \max f_{j}$, when f_{j} 's are regular functions and $f_{j}-f_{k}$ is non-negative if $j<k$.
(3) $P\left|p m t n,\left(r_{j}^{+}, p_{j}^{+}, w_{j}^{-}\right), d_{j}=d\right| \sum w_{j} U_{j}$.

Agreeability : $\left(r_{j}^{+}, p_{j}^{+}, d_{j}^{+}, w_{j}^{-}\right) \equiv r_{j} \nearrow, p_{j} \nearrow d_{j} \nearrow$ et w_{j} $\mathrm{Ex}: r_{j}, p_{j}=p, d_{j}=d, w_{j}=1$ is agreeable

Theorem 3

The following problems are solvable in polynomial time :
(1) $P\left|p m t n,\left(r_{j}^{+}, p_{j}^{+}\right)\right| \sum f_{j}$, when f_{j}^{\prime} 's are regular functions and $f_{j}-f_{k}$ is non-decreasing if $j<k$.
(2) $P\left|p m t n,\left(r_{j}^{+}, p_{j}^{+}\right)\right| \max f_{j}$, when f_{j} 's are regular functions and $f_{j}-f_{k}$ is non-negative if $j<k$.
(3) $P\left|p m t n,\left(r_{j}^{+}, p_{j}^{+}, w_{j}^{-}\right), d_{j}=d\right| \sum w_{j} U_{j}$.

Proof : simple exchange argument

Classification of problems $P\left|p m t n, r_{j}\right| \sum w_{j} T_{j}$. " $P \mid p m t n$," is omitted.

Classification of problems $P\left|p m t n, r_{j}\right| \sum w_{j} T_{j}$. " $P \mid p m t n$," is omitted.

Classification of problems $P\left|p m t n, r_{j}\right| \sum w_{j} T_{j}$. " $P \mid p m t n$," is omitted.

Classification of problems $P\left|p m t n, r_{j}\right| \sum w_{j} U_{j}$. " $P \mid p m t n$," is omitted.

Refining the boundary between \mathcal{P} and $\mathcal{N} \mathcal{P}$ for identical machine scheduling problems with preemption and release dates

Damien Prot ${ }^{1}$, Odile Bellenguez-Morineau ${ }^{1}$, Chams Lahlou ${ }^{1}$
${ }^{1}$ Ecole des Mines de Nantes
damien.prot@mines-nantes.fr

