Lien entre la conception de PTAS et les oracles (application au problème d'allocation de ressources dans un portfolio)

Marin Bougeret, Pierre-François Dutot, Alfredo Goldman, Yanik Ngoko, Denis Trystram

Laboratoire LIG

9 janvier 2009 Gotha MAO

3 Application of oracle techniques

- First guess : arbitrary subset
- Second guess : convenient subset
- Guess approximation

Presentation of the problem

PTAS techniques and Oracle

3 Application of oracle techniques

- First guess : arbitrary subset
- Second guess : convenient subset
- Guess approximation

- finite benchmark of instances : allows comparisons between algorithms
- set of algorithms
- goal : minimize the time needed to solve all the instances from the benchmark
- more than selection : combination of algorithms

- finite benchmark of instances : allows comparisons between algorithms
- set of algorithms
- goal : minimize the time needed to solve all the instances from the benchmark
- more than selection : combination of algorithms

- finite benchmark of instances : allows comparisons between algorithms
- set of algorithms
- goal : minimize the time needed to solve all the instances from the benchmark
- more than selection : combination of algorithms

- finite benchmark of instances : allows comparisons between algorithms
- set of algorithms
- goal : minimize the time needed to solve all the instances from the benchmark
- more than selection : combination of algorithms

What me mean by combination :

- one instance may be treated by several algorithms in parallel
- when a solution of an instance is found, everyone is aware
- but, the solution for an instance cannot be merged from partial solutions provided by different algorithms

Algorithm are parallel.

Parallel task model : moldable.

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for every instance I_j , every algorithm h_i , every number of ressource p, to cost $C(h_i, I_j, p)$ for solving I_j with h_i using p ressources

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for every instance l_j , every algorithm h_i , every number of ressource p, to cost $C(h_i, l_j, p)$ for solving l_j with h_i using p ressources

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for every instance l_j , every algorithm h_i , every number of ressource p, to cost $C(h_i, l_j, p)$ for solving l_j with h_i using p ressources

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for every instance l_j , every algorithm h_i , every number of ressource p, to cost $C(h_i, l_j, p)$ for solving l_j with h_i using p ressources

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for every instance l_j , every algorithm h_i , every number of ressource p, to cost $C(h_i, l_j, p)$ for solving l_j with h_i using p ressources

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for every instance l_j , every algorithm h_i , every number of ressource p, to cost $C(h_i, l_j, p)$ for solving l_j with h_i using p ressources

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for every instance l_j , every algorithm h_i , every number of ressource p, to cost $C(h_i, l_j, p)$ for solving l_j with h_i using p ressources

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for every instance l_j , every algorithm h_i , every number of ressource p, to cost $C(h_i, l_j, p)$ for solving l_j with h_i using p ressources

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for every instance l_j , every algorithm h_i , every number of ressource p, to cost $C(h_i, l_j, p)$ for solving l_j with h_i using p ressources

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for every instance I_j , every algorithm h_i , every number of ressource p, to cost $C(h_i, I_j, p)$ for solving I_j with h_i using p ressources

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for every instance I_j , every algorithm h_i , every number of ressource p, to cost $C(h_i, I_j, p)$ for solving I_j with h_i using p ressources

Context :

- hybridation, algorithm portfolios
- two of the existing techniques : time sharing Vs space sharing Space sharing assumptions (for a fixed problem *P*):
 - a portfolio of algorithm for P is given
 - there exists a finite set I of representative input of P
 - the time needed by every algorithm to solve every instance of I is known a priori !
 - the goal is to minimize the mean execution time for an instance of *I*

Definition of the dRSSP

Input of the discrete Resource Sharing Scheduling Problem:

- a finite set of instances $I = \{I_1, \ldots, I_n\}$
- a finite set of heuristics $H = \{h_1, \ldots, h_k\}$
- *m* identical resources
- a cost C(h_i, l_j, p) ∈ R⁺ for each l_j ∈ I, h_i ∈ H and p ∈ {1,..., m}

Continuous version $(p \in R^+)$ in [2].

Definition of the dRSSP

Output : an allocation $S = (S_1, \ldots, S_k)$ such that:

•
$$S_i \in \{0, ..., m\}$$

• $0 < \sum_{i=1}^k S_i \le m$
• S minimizes $\sum_{j=1}^n \min_{1 \le i \le k} \{C(h_i, I_j, S_i) | S_i > 0\}$

A restricted version

We study a restricted version in which :

- the cost function is linear in p the number of resources
- each heuristic must use at least one processor ($S_i \ge 1$), (well chosen portfolio)

Remark : with only the first constraint, the problem is innaproximable within a constant factor (if m < k).

The reduction is from the vertex cover problem. The input of the vertex cover problem is:

- k vertices
- n edges
- is there a vertex cover of size x ?

The input of the dRRSP is:

- k heuristics
- *n* instances in the benchmark
- x resources
- a cost matrix as follow (costs are indicated when using every resources)
- a threshold value T

	I_1	I_2	<i>I</i> 3	 I _n
h_1			T+1	
h_2			α	
			T+1	
			T+1	
h_k			α	

The input of the dRRSP is:

- k heuristics
- *n* instances in the benchmark
- x resources
- a cost matrix as follow (costs are indicated when using every resources)
- a threshold value T

The input of the restricted dRRSP is:

- k heuristics
- *n* instances in the benchmark
- x + k resources
- a cost matrix as follow (costs are indicated when using every resources)
- a threshold value T

The input of the restricted dRRSP is:

- k heuristics
- *n* +*k* instances in the benchmark
- x + k resources
- a cost matrix as follow (costs are indicated when using every resources)
- ullet a threshold value ${\cal T}$

NP hardness

We will now choose T

• if there is a vertex cover of size x: $Opt \le n \frac{\alpha m}{2} + Zm(k - x + \frac{x}{2}) = T$

• else, let's consider a solution S, and let $a = card \{S_i = 1\}$

NP hardness

If
$$a > k - x$$
:
 $Cost(S) \ge Zm(a + \sum_{S_i \neq 1} \frac{1}{S_i})$
 $= Zm(a + \sum_{S_i \neq 1} f(S_i))$ with f convex
 $\ge Zm(a + (k - a)f(\frac{\sum_{S_i \neq 1} S_i}{k - a}))$
 $= Zm(a + \frac{(k - a)^2}{k + x - a})$

And hence $Cost(S) - T \ge Zm(b) - \frac{n\alpha m}{2} > 0$, because b > 0 and Z can be chosen arbitrarily large. If a = k - x: $Cost(S) \ge (n-1)\frac{\alpha m}{2} + \alpha m + Zm(k - x + \frac{x}{2})$ $- x = \frac{\alpha m}{2}$

NP hardness

lf

$$a > k - x :$$

$$Cost(S) \geq Zm(a + \sum_{S_i \neq 1} \frac{1}{S_i})$$

$$= Zm(a + \sum_{S_i \neq 1} f(S_i)) \text{ with f convex}$$

$$\geq Zm(a + (k - a)f(\frac{\sum_{S_i \neq 1} S_i}{k - a}))$$

$$= Zm(a + \frac{(k - a)^2}{k + x - a})$$

And hence $Cost(S) - T \ge Zm(b) - \frac{n\alpha m}{2} > 0$, because b > 0 and Z can be chosen arbitrarily large. If a = k - x:

$$Cost(S) \geq (n-1)\frac{\alpha m}{2} + \alpha m + Zm(k-x+\frac{x}{2})$$
$$= T + \frac{\alpha m}{2}$$

A simple greedy algorithm

Notations (given a solution S):

• let $\sigma(j) = i_0 / \frac{C(h_{i_0}, l_j)}{S_{i_0}} = \min_{1 \le i \le k} \frac{C(h_i, l_j)}{S_i}$ be the index of the used heuristic for instance $j \in \{1, ..., n\}$ in S

• let $T(I_j) = \frac{C(h_{\sigma(j)}, I_j)}{S_{\sigma(j)}}$ be the processing time of instance j in SWe consider the mean-allocation (*MA*) algorithm which simply allocates $\lfloor \frac{m}{k} \rfloor$ resources to each heuristic.

A simple greedy algorithm

Proposition

MA is a k approximation.

Proof: Let $(a, b) \in \mathbb{N}^2$ such that $m = ak + b, b < k, a \ge 1$. $\forall j \in \{1, .., n\}$:

$$T(l_j) \leq \frac{C(h_{\sigma*(j)}, l_j)}{S_{\sigma^*(j)}} = \frac{S^*_{\sigma^*(j)}}{S_{\sigma^*(j)}} T^*(l_j)$$

$$\leq \frac{m - (k - 1)}{S_{\sigma^*(j)}} T^*(l_j)$$

$$= \frac{ak + b - (k - 1)}{a} T^*(l_j) \leq k T^*(l_j)$$

2 PTAS techniques and Oracle

3 Application of oracle techniques

- First guess : arbitrary subset
- Second guess : convenient subset
- Guess approximation

We present here some well known PTAS design techniques [3]:

- structuring the input
- structuring the output
- oracle based approach

- simplify: turn I into a more primitive instance I' . This simplification depends on the desired precision ϵ
- **solve**: determine an optimal solution *Opt'* for *I'* (in polynomial time)
- translate back: translate the solution *Opt'* for *I'* into an approximate solution *S* for *I*

- simplify: turn l into a more primitive instance l' . This simplification depends on the desired precision ϵ
- **solve**: determine an optimal solution *Opt'* for *I'* (in polynomial time)
- translate back: translate the solution *Opt'* for *I'* into an approximate solution *S* for *I*

- simplify: turn I into a more primitive instance I'. This simplification depends on the desired precision ϵ
- **solve**: determine an optimal solution *Opt'* for *I'* (in polynomial time)
- translate back: translate the solution *Opt'* for *I'* into an approximate solution *S* for *I*

- simplify: turn I into a more primitive instance I'. This simplification depends on the desired precision ϵ
- **solve**: determine an optimal solution *Opt'* for *I'* (in polynomial time)
- translate back: translate the solution *Opt'* for *I'* into an approximate solution *S* for *I*

- partition: partition the feasible solution space F into a (polynomial) number of districts F⁽¹⁾, ..., F^(d). This partition depends on the desired precision ε.
- find representative: For each district $F^{(I)}$, determine a good representative $S^{(I)}$ "close" to $Opt^{(I)}$
- take the best: select the best of all representatives as the final solution *S*

- partition: partition the feasible solution space F into a (polynomial) number of districts $F^{(1)}$, ..., $F^{(d)}$. This partition depends on the desired precision ϵ .
- find representative: For each district $F^{(l)}$, determine a good representative $S^{(l)}$ "close" to $Opt^{(l)}$
- take the best: select the best of all representatives as the final solution *S*

- partition: partition the feasible solution space F into a (polynomial) number of districts F⁽¹⁾, ..., F^(d). This partition depends on the desired precision ε.
- find representative: For each district $F^{(l)}$, determine a good representative $S^{(l)}$ "close" to $Opt^{(l)}$
- take the best: select the best of all representatives as the final solution *S*

- partition: partition the feasible solution space F into a (polynomial) number of districts $F^{(1)}$, ..., $F^{(d)}$. This partition depends on the desired precision ϵ .
- find representative: For each district $F^{(1)}$, determine a good representative $S^{(1)}$ "close" to $Opt^{(1)}$
- take the best: select the best of all representatives as the final solution *S*

Another vision is possible, based on guesses from a reliable oracle. Given in instance *I*, the main ("polynomial") steps are:

- define the guess G: choose a property P and ask a question Q(I) to obtain it
- \bullet the oracle provides the approriate answer A of length L
- the guess is G = Q(I) + A
- find a solution using the guess: we get a solution S(G, I)
- take the best: try all the possible answers and select the best of all the *S*(*X*, *l*)

Another vision is possible, based on guesses from a reliable oracle. Given in instance *I*, the main ("polynomial") steps are:

- define the guess G: choose a property P and ask a question Q(I) to obtain it
- the oracle provides the approriate answer A of length L

• the guess is
$$G = Q(I) + A$$

- find a solution using the guess: we get a solution S(G, I)
- take the best: try all the possible answers and select the best of all the S(X, I)

Another vision is possible, based on guesses from a reliable oracle. Given in instance *I*, the main ("polynomial") steps are:

- define the guess G: choose a property P and ask a question Q(I) to obtain it
- the oracle provides the approriate answer A of length L
- the guess is G = Q(I) + A
- find a solution using the guess: we get a solution S(G, I)
- take the best: try all the possible answers and select the best of all the *S*(*X*, *l*)

Another vision is possible, based on guesses from a reliable oracle. Given in instance *I*, the main ("polynomial") steps are:

- define the guess G: choose a property P and ask a question Q(I) to obtain it
- the oracle provides the approriate answer A of length L
- the guess is G = Q(I) + A
- find a solution using the guess: we get a solution S(G, I)
- take the best: try all the possible answers and select the best of all the *S*(*X*, *I*)

Another vision is possible, based on guesses from a reliable oracle. Given in instance *I*, the main ("polynomial") steps are:

- define the guess G: choose a property P and ask a question Q(I) to obtain it
- the oracle provides the approriate answer A of length L
- the guess is G = Q(I) + A
- find a solution using the guess: we get a solution S(G, I)
- take the best: try all the possible answers and select the best of all the *S*(*X*, *I*)

The oracle based approach (2)

What means G, and how using it ?

- G represents a constraint on the problem variables. Respecting G ensures that P is true.
- the solution *S*(*G*, *I*) does not necessarily respect the constraint *G*

Moreover, the oracle based approach leads to another technique..

- idea(1): outline approximation schemes = structuring the input + giving a guess [1]
- idea(2): guess approximation = approximate the guess itself !
 idea(3): .. ?

- idea(1): outline approximation schemes = structuring the input + giving a guess [1]
- idea(2): guess approximation = approximate the guess itself !
 idea(3): ... ?

- idea(1): outline approximation schemes = structuring the input + giving a guess [1]
- idea(2): guess approximation = approximate the guess itself !
 idea(3): ... ?

- idea(1): outline approximation schemes = structuring the input + giving a guess [1]
- idea(2): guess approximation = approximate the guess itself !
 idea(3): ... ?

- idea(1): outline approximation schemes = structuring the input + giving a guess [1]
- idea(2): guess approximation = approximate the guess itself !
- idea(3): .. ?

Presentation of the problem	First guess : arbitrary subset
PTAS techniques and Oracle	Second guess : convenient subset
Application of oracle techniques	Guess approximation

3 Application of oracle techniques

- First guess : arbitrary subset
- Second guess : convenient subset
- Guess approximation

First guess : arbitrary subset Second guess : convenient subset Guess approximation

Guess 1

As a first step, we choose arbitrarily g heuristics denoted by $\{h_1,\ldots,h_g\}.$

Definition

Let $G_1 = (S_1^*, \ldots, S_g^*)$, for a fixed subset of g heuristics and a fixed optimal solution S^* .

Notice that $|G_1| = glog(m)$.

We need some notations :

- let k' = k g be the number of remaining heuristics
- \bullet let $s=\Sigma_{i=1}^{g}S_{i}^{*}$ the number of processors used in the guess
- let m' = m s the number of remaining processors
- \bullet let $(a',b') \in \mathbb{N}^2$ such that m' = a'k' + b', b' < k'

First guess : arbitrary subset Second guess : convenient subset Guess approximation

Guess 1

As a first step, we choose arbitrarily g heuristics denoted by $\{h_1, \ldots, h_g\}$.

Definition

Let $G_1 = (S_1^*, \ldots, S_g^*)$, for a fixed subset of g heuristics and a fixed optimal solution S^* .

Notice that $|G_1| = glog(m)$. We need some notations :

- let k' = k g be the number of remaining heuristics
- let $s = \sum_{i=1}^{g} S_{i}^{*}$ the number of processors used in the guess
- let m' = m s the number of remaining processors
- let $(a',b') \in \mathbb{N}^2$ such that m' = a'k' + b', b' < k'

First guess : arbitrary subset Second guess : convenient subset Guess approximation

Algorithm MA^G

We consider the following MA^G algorithm (given any guess $G = (X_1, \ldots, X_g), X_i \ge 1$):

- allocate X_i processors to heuristic $h_i, i \in \{1, \dots, g\}$
- applies *MA* on the *k'* others heuristics with the *m'* remaining processors

We will use this algorithm with $G = G_1$.

First guess : arbitrary subset Second guess : convenient subset Guess approximation

Analysis of MA^{G_1}

Proposition

 MA^{G_1} is a k-g approximation.

Proof:

- $\mathit{MA^{G_1}}$ produces a valid solution because $a' \geq 1$
- for any instance *j* treated by a guessed heuristic in the optimal solution considered *MA*^{*G*₁} is even better than the optimal
- for the others, the analysis is the same as for the algorithm *MA*, and leads to the desired ratio

First guess : arbitrary subset Second guess : convenient subset Guess approximation

Algorithm MA_R^G

The ratio for instances treated by the guessed heuristics is unnecessarily good.

Thus, we consider mean-allocation-reassign (MA_R^G) algorithm (given any guess $G = (X_1, \ldots, X_g), X_i \ge 1$):

- allocates $X_i \lfloor rac{X_i}{lpha}
 floor$ processors to heuristic $h_i, i \in \{1, \dots, g\}$
- applies *MA* on the k' others heuristics with the $m' + \sum_{i=1}^{g} \lfloor \frac{X_i}{\alpha} \rfloor$ remaining processors

First guess : arbitrary subset Second guess : convenient subset Guess approximation

Algorithm MA_R^G

Remarks:

- MA_R^G doesn't respect G
- MA_R^G requires an s > k + c.. a solution to ensure this is to ask a stronger property P: there exists an optimal solution such that
 - S^*_i processors are allocated to $h_i, i \in \{1,..,g\}$
 - $\exists i_0 \in \{1,..,g\}$ such that $S^*_{i_0} \geq S_i, i \in \{1,..,k\}$

Thus, we need a larger guess to indicates the index i_0 . We will now look for stronger properties., *ie* we no longer choose an arbitrary subset of heuristics.

Τ

First guess : arbitrary subset Second guess : convenient subset Guess approximation

Another analysis of MA

For any heuristic $h_i, i \in \{1, ..., k\}$, let $T^*(h_i) = \sum_{j/\sigma^*(j)=i} T^*(I_j)$ be the "useful" computation time of heuristic *i* in the solution S^* .

$$\begin{aligned} \overline{T}_{MA} &= \sum_{i=1}^{k} \sum_{j/\sigma^{*}(j)=i} T(l_{j}) \\ &\leq \sum_{i=1}^{k} \frac{S_{i}^{*}}{S_{i}} \sum_{j/\sigma^{*}(j)=i} T^{*}(l_{j}) \\ &= \sum_{i=1}^{k} \frac{S_{i}^{*}}{S_{i}} T^{*}(h_{i}) \\ &\leq Max_{i}(T^{*}(h_{i})) \frac{m}{\lfloor \frac{m}{k} \rfloor} \\ &\leq Max_{i}(T^{*}(h_{i}))(2k-1) \end{aligned}$$

First guess : arbitrary subset Second guess : convenient subset Guess approximation

Guess 2

Definition

Let
$$G_2 = (S_1^*, \ldots, S_g^*)$$
, such that $T^*(h_1) \ge \ldots \ge T^*(h_g) \ge T^*(h_i), \forall i \in \{g + 1, \ldots, k\}$ in a fixed optimal solution S^* .

Notice that $|G_2| = glog(k) + glog(m)$. We will use the algorithm MA^G with $G = G_2$.

First guess : arbitrary subset Second guess : convenient subset Guess approximation

Analysis of MA^{G_2}

Proposition

 MA^{G_2} is a $\frac{k-1}{g}$ approximation.

Proof: We proceed as in the new analysis of MA:

$$T_{algo} = \sum_{i=1}^{g} \sum_{j/\sigma^{*}(j)=i} T(I_{j}) + \sum_{i=g+1}^{k} \sum_{j/\sigma^{*}(j)=i} T(I_{j})$$

$$\leq \sum_{i=1}^{g} T^{*}(h_{i}) + \sum_{i=g+1}^{k} \frac{S_{i}^{*}}{S_{i}} T^{*}(h_{i})$$

$$= \sum_{i=1}^{k} T^{*}(h_{i}) + \sum_{i=g+1}^{k} (\frac{S_{i}^{*}}{S_{i}} - 1) T^{*}(h_{i})$$

$$= Opt + \underbrace{T^{*}(h_{g})}_{\leq \frac{Opt}{g}} (\frac{m'}{a'} - k')$$

Introduction

Goal: we want \overline{G} smaller than G, without degrading too much the solution.

Insight:

- assume that we choose \bar{G} such that $S^*_i = \bar{S}_i \pm 1, orall i \in \{1,..,g\}$
- then, one guess cover 3^g possibilities

Problems:

- for the guessed heuristics, we don't know if we are suboptimal or over-optimal
- $ar{S}_i = S^*_i 1$ is very bad if S^*_i is small
- if $\sum_{i=1}^{g} \bar{S}_i > \sum_{i=1}^{g} \bar{S}_i^*$, we may have less remaining processors when applying MA

Introduction

Goal: we want \overline{G} smaller than G, without degrading too much the solution.

Insight:

- assume that we choose \bar{G} such that $S^*_i = \bar{S}_i \pm 1, orall i \in \{1,..,g\}$
- then, one guess cover 3^g possibilities

Problems:

- for the guessed heuristics, we don't know if we are suboptimal or over-optimal
- $ar{S}_i = S^*_i 1$ is very bad if S^*_i is small
- if $\sum_{i=1}^{g} \bar{S}_i > \sum_{i=1}^{g} \bar{S}_i^*$, we may have less remaining processors when applying MA

Presentation of the problem PTAS techniques and Oracle Application of oracle techniques PTAS techniques and Oracle techniques Application of oracle techniques

Definition of \overline{G}

To solve these problems, we want:

- $\bar{S}_i \leq S_i^*$
- $\bar{S}_i = S_i^*$ for the "small" values of S_i^*

Thus, given a guess $G = (S_1^*, ..., S_g^*)$:

- we choose a size j_1 bits for the significant, $j_1 \in \{1, .., \lceil \log(m) \rceil\}$
- we write $S_i^* = t_i 2^{x_i} + r_i$, with t_i encoded on j_1 bits, and $0 \le x_i \le \lceil \log(m) \rceil j_1$, et $r_i \le 2^{x_i} 1$
- we define $\bar{S}_i = t_i 2^{x_i}$

We consider that the oracle gives \overline{G}_2 . Notice that $|\overline{G}_2| = \sum_{i=1}^{g} (|t_i| + |x_i|) \le g(j_1 + \log(\log(m)).$

First guess : arbitrary subset Second guess : convenient subset Guess approximation

Analysis of $MA^{\overline{G}_2}$

Proposition

$$MA^{\bar{G}_2}$$
 is a $\beta + \frac{k-g-1}{g}$ approximation, with $1 + \frac{1}{2^{j_1-1}} = \beta$.

Proof:

• if
$$S_i^* \leq 2^{j_1} - 1$$
, then $\bar{S}_i = S_i^*$
• else, $\frac{S_i^*}{\bar{S}_i} = \frac{t_i 2^{x_i} + r_i}{t_i 2^{x_i}} \leq 1 + \frac{1}{t_i} \leq 1 + \frac{1}{2^{j_1 - 1}} = \beta$

Then, using the same analysis as MA^{G_2} :

$$T_{algo} \leq \sum_{i=1}^{g} \beta T^{*}(h_{i}) + \sum_{i=g+1}^{k} \frac{S_{i}^{*}}{S_{i}} T^{*}(h_{i})$$
$$= \beta Opt + \underbrace{T^{*}(h_{g})}_{\leq \frac{Opt}{g}} (\frac{m'}{a'} - k')$$

First guess : arbitrary subset Second guess : convenient subset Guess approximation

Outline of the part

Outline of the derived PTASs:

algorithm	approximation ratio	complexity
MA ^G 1	(k-g)	O(m ^g * kn)
MA ^G 2	$\frac{k-1}{\varphi}$	O((km) ^g * kn)
$MA^{\bar{G}_2}$	$\beta + \frac{k-g-1}{g}$	$O(k(2^{j_1}log(m))^g * kn)$

Conclusion

In this presentation:

- we extended the resource sharing problem to the discrete version (dRRSP)
- we proved the NP hardness of the restricted version we are interested in
- we presented an small overview of PTAS's techniques, and introduced the guess approximation methodology
- we applied this methodology on the dRRSP

First guess : arbitrary subset Second guess : convenient subset Guess approximation

Conclusion

In this presentation:

- we extended the resource sharing problem to the discrete version (dRRSP)
- we proved the NP hardness of the restricted version we are interested in
- we presented an small overview of PTAS's techniques, and introduced the guess approximation methodology
- we applied this methodology on the dRRSP

First guess : arbitrary subset Second guess : convenient subset Guess approximation

Bibliography

[1] L. A. Hall and D. B. Shmoys.

Approximation schemes for constrained scheduling problems. pages 134–139, 1989.

- [2] T. Sayag, S. Fine, and Y. Mansour. Combining multiple heuristics. 2006.
- P. Schuurman and G. J. Woeginger.
 Approximation schemes a tutorial.
 In Lectures on Scheduling, 2000.