Some ideas and open problems in real-time stochastic scheduling

Liliana CUCU, TRIO team, Nancy, France

Real-time systems

- Correct reaction
- **I**emporal constraints

Gotha-- Liliana CUCU - 04/04/2008

Gotha-- Liliana CUCU - 04/04/2008

	Real	-tim	ne m	odel	•	$\tau_i = (O_i, C_i, T_i, D_i)$					
$ au_1$	=(C	D_1, C	$T_1, T_1,$	$D_1)$ =	=(1,	2,5,4	4)		↑ ↓	release ti deadline	imes es
-1											
	0		2	3	4	5	6			temps	5

Gotha-- Liliana CUCU - 04/04/2008

Why stochastic?

Soft real-time constraints Uncertainness Worst-case behavior is a rare event

Gotha-- Liliana CUCU - 04/04/2008

Extracting quantitative information, i.e., obtaining distribution functions

Extracting quantitative information, i.e., obtaining distribution functions

and

Extracting quantitative information, i.e., obtaining distribution functions

and

Temporal analysis of systems with at least one parameter given by a random variables

Extracting quantitative information, i.e., obtaining distribution functions

and

Temporal analysis of systems with at least one parameter given by a random variables

Extracting quantitative information

Extracting quantitative information

Extracting quantitative information

Joint work with N. Navet and René Schott (TRIO, Nancy)

Activation model of tasks not known

Activation model of tasks not known

Monte-Carlo simulation

Activation model of tasks not known

Monte-Carlo simulation Analytical approaches

Activation model of tasks not known

Monte-Carlo simulation Analytical approaches Markov's, Tchebychev's, Chemoff's upper bounds

Activation model of tasks not known

Monte-Carlo simulation Analytical approaches Markov's, Tchebychev's, Chemoff's upper bounds Large deviation

Activation model of tasks not known

Monte-Carlo simulation
Analytical approaches
Markov's, Tchebychev's, Chemoff's upper bounds
Large deviation

- better suited than simulation to rare events
- easily implementable
- embedded in a broader analysis

Large deviation : main result

 $M_n = \frac{1}{n} \sum_{k=1}^n R_{i,k}$ mean of response times over n task instances

$$P(M_n \ge value)$$

Cramer's theorem : if $R_{i,n}$ independent identically distributed random variables

$$P(M_n \in \mathbb{G}) \asymp e^{-n \inf_{x \in \mathbb{G}} I(x)} \mathbb{G} = [value, \infty)$$

$$I(x) = \sup_{\tau > 0} [\tau x - \log E(e^{\tau x})] = \sup_{\tau > 0} [\tau x - \log \sum_{k = -\infty}^{+\infty} p_k e^{k\tau}]$$

Technical contribution

Can deal with distributions given as histograms

Technical contribution

Can deal with distributions given as histograms

Extracting quantitative information, i.e., obtaining distribution functions

and

Temporal analysis of systems with at least one parameter given by a random variables

Extracting quantitative information, i.e., obtaining distribution functions

and

Temporal analysis of systems with at least one parameter given by a random variables

What is the model?

$$\tau_i = (O_i, C_i, T_i, D_i)$$

What is the model?

$$\tau_i = (O_i, C_i, T_i, D_i)$$

$$\mathbb{X} = \begin{pmatrix} x_k \\ P(X = x_k) \end{pmatrix}$$

Gotha-- Liliana CUCU - 04/04/2008

12/26

What is the model?

$$\mathbb{X} = \begin{pmatrix} x_k \\ P(X = x_k) \end{pmatrix}$$

Gotha-- Liliana CUCU - 04/04/2008

12/26

$$\mathbb{X} = \begin{pmatrix} x_k \\ P(X = x_k) \end{pmatrix}$$

Gotha-- Liliana CUCU - 04/04/2008

$$\mathbb{X} = \begin{pmatrix} x_k \\ P(X = x_k) \end{pmatrix}$$

Gotha-- Liliana CUCU - 04/04/2008

$$\mathbb{X} = \begin{pmatrix} x_k \\ P(X = x_k) \end{pmatrix}$$

Gotha-- Liliana CUCU - 04/04/2008

$$\mathbb{X} = \begin{pmatrix} x_k \\ P(X = x_k) \end{pmatrix}$$

Gotha-- Liliana CUCU - 04/04/2008

$$\mathbb{X} = \begin{pmatrix} x_k \\ P(X = x_k) \end{pmatrix}$$

Gotha-- Liliana CUCU - 04/04/2008

$$\mathbb{X} = \begin{pmatrix} x_k \\ P(X = x_k) \end{pmatrix}$$

$$\mathbb{X} = \begin{pmatrix} x_k \\ P(X = x_k) \end{pmatrix}$$

Response time $\mathbb{R}_i = \begin{pmatrix} 6 & 9 & 11 \\ 0.5 & 0.3 & 0.2 \end{pmatrix}$

Response time $\mathbb{R}_i = \begin{pmatrix} 6 & 9 & 11 \\ 0.5 & 0.3 & 0.2 \end{pmatrix}$

Satisfied deadline $satisfyDeadline_i = \begin{pmatrix} yes & no \\ 0.8 & 0.2 \end{pmatrix}$

Response time $\mathbb{R}_i = \begin{pmatrix} 6 & 9 & 11 \\ 0.5 & 0.3 & 0.2 \end{pmatrix}$

Satisfied deadline $satisfyDeadline_i = \begin{pmatrix} yes & no \\ 0.8 & 0.2 \end{pmatrix}$

Response time jitter
$$J_i = \begin{pmatrix} 2 & 3 & 4 \\ 0.7 & 0.1 & 0.3 \end{pmatrix}$$

etc ...

Response time $\mathbb{R}_i = \begin{pmatrix} 6 & 9 & 11 \\ 0.5 & 0.3 & 0.2 \end{pmatrix}$

Satisfied deadline *satisfyDeadline*_i = $\begin{pmatrix} yes & no \\ 0.8 & 0.2 \end{pmatrix}$ Response time jitter $J_i = \begin{pmatrix} 2 & 3 & 4 \\ 0.7 & 0.1 & 0.3 \end{pmatrix}$

] Simulations? Analytical proofs?

etc ...

Response time $\mathbb{R}_i = \begin{pmatrix} 6 & 9 & 11 \\ 0.5 & 0.3 & 0.2 \end{pmatrix}$

Satisfied deadline *satisfyDeadline*_i = $\begin{pmatrix} yes & no \\ 0.8 & 0.2 \end{pmatrix}$ Response time jitter $J_i = \begin{pmatrix} 2 & 3 & 4 \\ 0.7 & 0.1 & 0.3 \end{pmatrix}$

Simulations? Analytical proofs?

etc ...

Joint work with E. Tovar (Hurray, Portugal)

When minimal inter-arrival times are considered

$$R_i = C_i + \sum_{j \in hp(i)} \left\lceil \frac{R_i}{T_j} \right\rceil C_j$$

This time ...

Response time

$$\mathbb{R}_i = C_i \otimes (\otimes_{k \in P} \lceil \frac{\mathbb{R}_i}{C_k}) \otimes (\otimes_{k \in R} N_{\tau_k} C_k)$$

Algorithm providing a solution

Initial value
$$\Re_i^0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 $N_{\tau_k} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \forall k \in P_{hp(i)}$

New arrivals are added Response time contains to the response time only changed values

NO

YES

All values unchaged or deadline missed ?

 $\begin{pmatrix} 6 & 9 & 11 \\ 0.5 & 0.3 & 0.2 \end{pmatrix}$

 $\mathbb{R}_i =$

Initial values

$$\Re_i^0 = \begin{pmatrix} r_{i,1}^0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ and } N_k = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \forall k \in R_{hp(i)}$$

Iteration *m* - first step

Working random variable
$$L^m$$

 $L_j^m = C_i + \sum_{k \in P_{hp(i)}} \left[\frac{L_j^m}{T_k} \right] \cdot C_k + \sum_{k \in R_{hp(i)}} N_k(r_j^{m-1}) \cdot C_k$

 r_j^{m-1} initial value

An example

$$L_{4}^{1} = \begin{pmatrix} l_{1}^{1} \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix} \text{ where } l_{1}^{1} \text{ solution of equation } l_{1}^{1} = 0 \cdot C_{1} + \left[\frac{l_{1}^{1}}{T_{2}} \right] C_{2} + 0 \cdot C_{3} + 1 \cdot C_{4}$$

with $r_{1}^{0} = 0$ initial value

Iteration *m* - second step

$\Re_i^m = L^m \otimes (\bigotimes_{k \in R_{hp(i)}} \Delta_k \cdot C_k)$

Back to the example

Task	Т	С
$oldsymbol{ au}_1$	$T_1 = \begin{pmatrix} 8 & 10 & 15 \\ 0.1 & 0.3 & 0.6 \end{pmatrix}$	3
$ au_2$	$T_2 = \begin{pmatrix} 10\\1 \end{pmatrix}$	3
$ au_3$	$T_3 = \begin{pmatrix} 15 & 20\\ 0.6 & 0.4 \end{pmatrix}$	2
${oldsymbol{ au}}_4$	$T_4 = \begin{pmatrix} 15\\1 \end{pmatrix}$	2
$ au_{5}$	$T_5 = \begin{pmatrix} 14 & 22 \\ 0.4 & 0.6 \end{pmatrix}$	2

$$\mathfrak{R}_4^2 = L^2 \otimes \begin{pmatrix} 1 & 2 \\ 0.60.4 \end{pmatrix} C_1 \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} C_3$$

Iteration *m* - get ride of unchanged values

$$\begin{cases} L^{m} = \begin{pmatrix} 1 & 3 & 4 \\ 0.50.20.3 \end{pmatrix} \\ \Re_{i}^{m} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0.10.40.30.10.1 \end{pmatrix} \end{cases}$$

New $\Re_{i}^{m} = Comp(\Re_{i}^{m}, L^{m}) = \begin{pmatrix} 2 & 5 \\ 0.4 & 0.1 \end{pmatrix}$

Gotha-- Liliana CUCU - 04/04/2008

One entire iteration (3) of our example

The periodic higher tasks are giving a response time:

$$\mathbf{I} = \begin{pmatrix} 20\\ 0.5 \end{pmatrix}$$

The random higher tasks are giving a response time:

$$\Re^{3}_{n,0} = I \otimes \left(F^{*}(20) \cdot C_{3} \right) = \begin{pmatrix} 20 & 21 \\ 0.42 & 0.08 \end{pmatrix},$$

where $F^{*}(20) = \begin{pmatrix} 2 & 3 \\ 0.84 & 0.16 \end{pmatrix}$

Gotha-- Liliana CUCU - 04/04/2008

One entire iteration (3) of our example

The periodic higher tasks are giving a response time:

$$I = \begin{pmatrix} 20\\ 0.5 \end{pmatrix}$$

The random higher tasks are giving a response time:

$$\Re^{3}_{n,0} = I \otimes \left(F^{*}(20) \cdot C_{3} \right) = \begin{pmatrix} 20 & 21 \\ 0.42 & 0.08 \end{pmatrix},$$

where $F^{*}(20) = \begin{pmatrix} 2 & 3 \\ 0.84 & 0.16 \end{pmatrix}$

Gotha-- Liliana CUCU - 04/04/2008

Analysis able to give an answer in the deterministic case and to allow mixing hard and soft real-time constraints

Analysis able to give an answer in the deterministic case and to allow mixing hard and soft real-time constraints
 Robustness based on large deviations

Analysis able to give an answer in the deterministic case and to allow mixing hard and soft real-time constraints
 Robustness based on large deviations
 Next step?

Marcolition: deterministic case

Initial condition: deterministic case Robustness condition: worst-case behavior of the algorithms is rare

Initial condition: deterministic case
 Robustness condition: worst-case
 behavior of the algorithms is rare
 Worst-case condition: insure worst-case
 when mixing hard and soft

A. Burns, G. Bernat, I. Broster - A probabilistic framework for schedulability analysis

M. Pinedo

S. Edgar, A. Burns N. Navet, L. Cucu, R. Schott

J.L. Diaz, D.F. Garcìa, K. Kim, C.-G. Lee, L. Lo Bello, J.M. Lopez, S.L. Min, O. Mirabella L. Cucu, E.Tovar

- Offline deterministic scheduling, stochastic scheduling and online deterministic scheduling: a comparative overview
- Statistical analysis of WCET for scheduling
- Probabilistic estimation of response times through large deviations
- Stochastic analysis of real-time systems
 - A framework for response times analysis of
- fixed-priority tasks with stochastic inter-arrival times

A. Burns, G. Bernat, I. Broster - A probabilistic framework for schedulability		
M. Pinedo	 Offline deterministic scheduling, stochastic scheduling and online deterministic scheduling: a comparative overview 	
S. Edgar, A. Burns N. Navet, L. Cucu, R. Schott	 Statistical analysis of WCET for scheduling Probabilistic estimation of response times through large deviations 	
J.L. Diaz, D.F. Garcìa, K. Kim, CG. Lee, L. Lo Bello, J.M. Lopez, S.L. Min. O. Mirabella	 Stochastic analysis of real-time systems 	
L. Cucu, E. Tovar	A framework for response times analysis of – fixed-priority tasks with stochastic inter-arrival	

times

A. Burns, G. Bernat, I. Broster	 A probabilistic framework for schedulability analysis
M. Pinedo	 Offline deterministic scheduling, stochastic scheduling and online deterministic scheduling: a comparative overview
S. Edgar, A. Burns N. Navet, L. Cucu, R. Schott	 Statistical analysis of WCET for scheduling Probabilistic estimation of response times through large deviations
J.L. Diaz, D.F. Garcìa, K. Kim, CG. Lee, L. Lo Bello, J.M. Lopez, S.L. Min, O. Mirabella L. Cucu, E. Tovar	 Stochastic analysis of real-time systems A framework for response times analysis of fixed-priority tasks with stochastic inter-arrival times

A. Burns, G. Bernat, I. Broster - A probabilistic framework for schedulability analysis			
M. Pinedo	 Offline deterministic scheduling, stochastic scheduling and online deterministic scheduling: a comparative overview 		
S. Edgar, A. Burns N. Navet, L. Cucu, R. Schott	 Statistical analysis of WCET for scheduling Probabilistic estimation of response times through large deviations 		
J.L. Diaz, D.F. Garcìa, K. Kim, CG. Lee, L. Lo Bello, J.M. Lopez, S.L. Min, O. Mirabella L. Cucu, E. Tovar	 Stochastic analysis of real-time systems A framework for response times analysis of fixed-priority tasks with stochastic inter-arrival times 		

Thank you for your attention

Open problems in stochastic real-time scheduling : introduction of dependent random variables