Some ideas and open problems in real-time stochastic scheduling

Liliana CUCU,TRIO team, Nancy, France

Real-time systems

Reactive systems

(]) Correct reaction

IV Temporal constraints

Real-time systems (2)

Real-time model:
 $\tau_{i}=\left(O_{i}, C_{i}, T_{i}, D_{i}\right)$

$$
\tau_{1}=\left(O_{1}, C_{1}, T_{1}, D_{1}\right)=(1,2,5,4)
$$

release times \downarrow deadlines

Real-time model:
 $\tau_{i}=\left(O_{i}, C_{i}, T_{i}, D_{i}\right)$

$$
\tau_{1}=\left(O_{1}, C_{1}, T_{1}, D_{1}\right)=(1,2,5,4)
$$

release times \downarrow deadlines

Real-time model:
 $\tau_{i}=\left(O_{i}, C_{i}, T_{i}, D_{i}\right)$

$$
\tau_{1}=\left(O_{1}, C_{1}, T_{1}, D_{1}\right)=(1,2,5,4)
$$

release times \downarrow deadlines

Why stochastic?

(I) Soft real-time constraints
 Uncertainness
 Worst-case behavior is a rare event

Where is the "stochastic touch"?

Where is the "stochastic touch"?

Extracting quantitative information, i.e., obtaining distribution functions

Where is the "stochastic touch"?

Extracting quantitative information, i.e., obtaining distribution functions

and

Where is the "stochastic touch"?

Extracting quantitative information, i.e., obtaining distribution functions

and

Temporal analysis of systems with at least one parameter given by a random variables

Where is the "stochastic touch"?

Extracting quantitative information, i.e., obtaining

 distribution functionsand
Temporal analysis of systems with at least one parameter given by a random variables

Extracting quantitative information

Extracting quantitative information

Extracting quantitative information

Joint work with N. Navet and René Schott (TRIO, Nancy)

How to estimate the average response time???

How to estimate the average response time???

Activation model of tasks not known

How to estimate the average response time???

Activation model of tasks not known

\square Monte-Carlo simulation

How to estimate the average response time???

Activation model of tasks not known

8

Monte-Carlo simulation Analytical approaches

How to estimate the average response time???

Activation model of tasks not known

8
Monte-Carlo simulation
Analytical approaches
Markov's,Tchebychev's, Chemoff's upper bounds

How to estimate the average response time???

Activation model of tasks not known

8
Monte-Carlo simulation
Analytical approaches
Markov's, Tchebychev's, Chemoff's upper bounds
(V) Large deviation

How to estimate the average response time???

Activation model of tasks not known

8
Monte-Carlo simulation
Analytical approaches
Markov's, Tchebychev's, Chemoff's upper bounds
(V) Large deviation

- better suited than simulation to rare events
- easily implementable
- embedded in a broader analysis

Large deviation : main result

$M_{n}=\frac{1}{n} \sum_{k=1}^{n} R_{i, k}$ mean of response times over n task instances

$$
P\left(M_{n} \geq \text { value }\right)
$$

Cramer's theorem : if $R_{i, n}$ independent identically distributed random variables

$$
\begin{aligned}
& P\left(M_{n} \in \mathbb{G}\right) \asymp e^{-n \inf _{x \in \mathbb{G}} I(x)} \\
& \mathbb{G}=[\text { value }, \infty) \\
& I(x)=\sup _{\tau>0}\left[\tau x-\log E\left(e^{\tau x}\right)\right]=\sup _{\tau>0}\left[\tau x-\log \sum_{k=-\infty}^{+\infty} p_{k} e^{k \tau}\right]
\end{aligned}
$$

Technical contribution

Can deal with distributions given as histograms

RT intervalProbability k

$[0,10)$	$1 / 25$	5
$[10,20)$	$2 / 25$	15
$[20,30)$	$3 / 25$	25
$[30,40)$	$10 / 25$	35
$[40,50)$	$4 / 25$	45
$[50,60)$	$3 / 25$	55
$[60,70)$	$2 / 25$	65

Technical contribution

Can deal with distributions given as histograms

RT intervalProbability k

$[0,10)$	$1 / 25$	5
$[10,20)$	$2 / 25$	15
$[20,30)$	$3 / 25$	25
$[30,40)$	$10 / 25$	35
$[40,50)$	$4 / 25$	45
$[50,60)$	$3 / 25$	55
$[60,70)$	$2 / 25$	65

!! Uniprocessor or multiprocessor !!

Where is the "stochastic touch"?

Extracting quantitative information, i.e., obtaining distribution functions

and

Temporal analysis of systems with at least one parameter given by a random variables

Where is the "stochastic touch"?

Extracting quantitative information, i.e., obtaining distribution functions

and

Temporal analysis of systems with at least one parameter given by a random variables

What is the model?

$$
\tau_{i}=\left(O_{i}, C_{i}, T_{i}, D_{i}\right)
$$

What is the model?

$$
\tau_{i}=\left(O_{i}, C_{i}, T_{i}, D_{i}\right)
$$

$$
\mathbb{X}=\binom{x_{k}}{P\left(X=x_{k}\right)}
$$

What is the model?

What is the model?

$$
\mathbb{X}=\binom{x_{k}}{P\left(X=x_{k}\right)}
$$

What is the model?

$$
\mathbb{X}=\binom{x_{k}}{P\left(X=x_{k}\right)}
$$

What is the model?

$$
\mathbb{X}=\binom{x_{k}}{P\left(X=x_{k}\right)}
$$

What do we want?

Response time $\mathbb{R}_{i}=\left(\begin{array}{ccc}6 & 9 & 11 \\ 0.5 & 0.3 & 0.2\end{array}\right)$

What do we want?

Response time $\mathbb{R}_{i}=\left(\begin{array}{ccc}6 & 9 & 11 \\ 0.5 & 0.3 & 0.2\end{array}\right)$
Satisfied deadline satisfyDeadline $_{i}=\left(\begin{array}{cc}\text { yes no } \\ 0.8 & 0.2\end{array}\right)$

What do we want?

Response time $\mathbb{R}_{i}=\left(\begin{array}{ccc}6 & 9 & 11 \\ 0.5 & 0.3 & 0.2\end{array}\right)$
Satisfied deadline satisfyDeadline $_{i}=\left(\begin{array}{cc}\text { yes no } \\ 0.8 & 0.2\end{array}\right)$
Response time jitter $\quad J_{i}=\left(\begin{array}{ccc}2 & 3 & 4 \\ 0.7 & 0.1 & 0.3\end{array}\right)$
etc ...

What do we want?

Response time $\mathbb{R}_{i}=\left(\begin{array}{ccc}6 & 9 & 11 \\ 0.5 & 0.3 & 0.2\end{array}\right)$
Satisfied deadline satisfyDeadline $_{i}=\left(\begin{array}{cc}\text { yes no } \\ 0.8 & 0.2\end{array}\right)$
Response time jitter $\quad J_{i}=\left(\begin{array}{ccc}2 & 3 & 4 \\ 0.7 & 0.1 & 0.3\end{array}\right)$
\square Simulations? Analytical proofs?
etc ...

What do we want?

Response time $\mathbb{R}_{i}=\left(\begin{array}{ccc}6 & 9 & 11 \\ 0.5 & 0.3 & 0.2\end{array}\right)$
Satisfied deadline satisfyDeadline $_{i}=\left(\begin{array}{cc}\text { yes no } \\ 0.8 & 0.2\end{array}\right)$
Response time jitter $\quad J_{i}=\left(\begin{array}{ccc}2 & 3 & 4 \\ 0.7 & 0.1 & 0.3\end{array}\right)$
\square Simulations? Analytical proofs?
etc ...

Joint work with E.Tovar (Hurray, Portugal)

Response time of a task τ_{i}

When minimal inter-arrival times are considered

$$
R_{i}=C_{i}+\sum_{j \in h p(i)}\left\lceil\frac{R_{i}}{T_{j}}\right\rceil C_{j}
$$

This time ...

Response time

$$
\mathbb{R}_{i}=C_{i} \otimes\left(\otimes_{k \in P}\left\lceil\frac{\mathbb{R}_{i}}{C_{k}}\right) \otimes\left(\otimes_{k \in R} N_{\tau_{k}} C_{k}\right)\right.
$$

Algorithm providing a solution $\quad \mathbb{R}_{i}=\left(\begin{array}{ccc}6 & 9 & 11 \\ 0.5 & 0.3 & 0.2\end{array}\right)$

Initial value $\mathfrak{K}_{i}^{0}=\binom{0}{1} \quad N_{x_{i}}=\binom{0}{1} \forall k \in P_{\text {pret }}$

Initial values

$$
\mathfrak{R}_{i}^{0}=\binom{r_{i, 1}^{0}}{1}=\binom{0}{1} \text { and } N_{k}=\binom{0}{1}, \forall k \in R_{h p(i)}
$$

Iteration m - first step

Working random variable L^{m}

$$
\begin{gathered}
L_{j}^{m}=C_{i}+\sum_{k \in P_{p p(i)}}\left\lceil\frac{L_{j}^{m}}{T_{k}}\right\rceil \cdot C_{k}+\sum_{k \in R_{p p(i)}} N_{k}\left(r_{j}^{m-1}\right) \cdot C_{k} \\
r_{j}^{m-1} \text { initial value }
\end{gathered}
$$

An example

Task	T	C
τ_{1}	$T_{1}=\left(\begin{array}{ccc}8 & 10 & 15 \\ 0.1 & 0.3 & 0.6\end{array}\right)$	3
τ_{2}	$T_{2}=\binom{10}{1}$	3
τ_{3}	$T_{3}=\left(\begin{array}{cc}15 & 20 \\ 0.6 & 0.4\end{array}\right)$	2
τ_{4}	$T_{4}=\binom{15}{1}$	2
τ_{5}	$T_{5}=\left(\begin{array}{cc}14 & 22 \\ 0.4 & 0.6\end{array}\right)$	2

$L_{4}^{1}=\binom{l_{1}^{1}}{1}=\binom{5}{1}$ where l_{1}^{1} solution of equation $l_{1}^{1}=0 \cdot \mathrm{C}_{1}+\left[\frac{l_{1}^{1}}{T_{2}}\right] \mathrm{C}_{2}+0 \cdot \mathrm{C}_{3}+1 \cdot \mathrm{C}_{4}$ with $r_{1}^{0}=0$ initial value

Iteration m - second step

$$
\mathfrak{R}_{i}^{m}=L^{m} \otimes\left(\underset{k \in R_{h p(i)}}{\otimes} \Delta_{k} \cdot C_{k}\right)
$$

Back to the example

Task	T	C
τ_{1}	$T_{1}=\left(\begin{array}{ccc}8 & 10 & 15 \\ 0.1 & 0.3 & 0.6\end{array}\right)$	3
τ_{2}	$T_{2}=\binom{10}{1}$	3
τ_{3}	$T_{3}=\left(\begin{array}{cc}15 & 20 \\ 0.6 & 0.4\end{array}\right)$	2
τ_{4}	$T_{4}=\binom{15}{1}$	2
τ_{5}	$T_{5}=\left(\begin{array}{cc}14 & 22 \\ 0.4 & 0.6\end{array}\right)$	2

$$
\Re_{4}^{2}=L^{2} \otimes\left(\begin{array}{cc}
1 & 2 \\
0.60 .4
\end{array}\right) C_{1} \otimes\binom{0}{1} C_{3}
$$

Iteration m - get ride of unchanged values

$$
\left\{\begin{array}{c}
L^{m}=\left(\begin{array}{ccc}
1 & 3 & 4 \\
0.50 .20 .3
\end{array}\right) \\
\Re_{i}^{m}=\left(\begin{array}{cccc}
1 & 2 & 3 & 4
\end{array}\right) \\
0.10 .40 .30 .10 .1
\end{array}\right) ~ \$
$$

New $\Re_{i}^{m}=\operatorname{Comp}\left(\Re_{i}^{m}, L^{m}\right)=\left(\begin{array}{cc}2 & 5 \\ 0.4 & 0.1\end{array}\right)$

One entire iteration (3) of our example

The periodic higher tasks are giving a response time:

$$
\mathrm{I}=\binom{20}{0.5}
$$

The random higher tasks are giving a response time:

$$
\mathfrak{R}_{n, 0}^{3}=\mathrm{I} \otimes\left(F^{*}(20) \cdot \mathrm{C}_{3}\right)=\left(\begin{array}{cc}
20 & 21 \\
0.42 & 0.08
\end{array}\right)
$$

$$
\text { where } F^{*}(20)=\left(\begin{array}{cc}
2 & 3 \\
0.84 & 0.16
\end{array}\right)
$$

One entire iteration (3) of our example

The periodic higher tasks are giving a response time:

$$
I=\left(\begin{array}{l}
20 \\
0.5
\end{array}\right.
$$

The random higher tasks are giving a response time:

$$
\mathfrak{R}_{n, 0}^{3}=\mathrm{I} \otimes\left(F^{*}(20) \cdot \mathrm{C}_{3}\right)=\left(\begin{array}{cc}
20 & 21 \\
0.42 & 0.08
\end{array}\right)
$$

$$
\text { where } F^{*}(20)=\left(\begin{array}{cc}
2 & 3 \\
0.84 & 0.16
\end{array}\right)
$$

Some precautions when we think stochastic ...

Some precautions when we think stochastic ...

> (V) Analysis able to give an answer in the deterministic case and to allow mixing hard and soft real-time constraints

Some precautions when we think stochastic ...

(] Analysis able to give an answer in the deterministic case and to allow mixing hard and soft real-time constraints
(-] Robustness based on large deviations

Some precautions when we think stochastic ...

(] Analysis able to give an answer in the deterministic case and to allow mixing hard and soft real-time constraints
(V) Robustness based on large deviations Next step?

How to validate stochastic?

How to validate stochastic?

I Initial condition: deterministic case

How to validate stochastic?

(] Initial condition: deterministic case Robustness condtion: worst-case behavior of the algorithms is rare

How to validate stochastic?

(] Initial condition: deterministic case Robustness condtion: worst-case behavior of the algorithms is rare (V) Worst-case condition: insure worst-case when mixing hard and soft

Some references

A. Burns, G. Bernat, I. Broster - A probabilistic framework for schedulability analysis
M. Pinedo
S. Edgar, A. Burns
N. Navet, L. Cucu, R. Schott
J.L. Diaz, D.F. Garcia, K. Kim, C.-G. Lee, L. Lo Bello, J.M. Lopez, S.L. Min, O. Mirabella L. Cucu, E.Tovar

- Offline deterministic scheduling, stochastic scheduling and online deterministic scheduling: a comparative overview
- Statistical analysis of WCET for scheduling
- Probabilistic estimation of response times through large deviations
- Stochastic analysis of real-time systems

A framework for response times analysis of

- fixed-priority tasks with stochastic inter-arrival times

Some references

A. Burns, G. Bernat, I. Broster - A probabilistic framework for schedulability analysis
M. Pinedo

- Offline deterministic scheduling, stochastic scheduling and online deterministic scheduling: a comparative overview
S. Edgar, A. Burns
N. Navet, L. Cucu, R. Schott
J.L. Diaz, D.F. Garcia, K. Kim, C.-G. Lee, L. Lo Bello, J.M. Lopez, S.L. Min, O. Mirabella L. Cucu, E.Tovar
- Statistical analysis of WCET for scheduling
- Probabilistic estimation of response times through large deviations
- Stochastic analysis of real-time systems

A framework for response times analysis of

- fixed-priority tasks with stochastic inter-arrival times

Some references

A. Burns, G. Bernat, I. Broster - A probabilistic framework for schedulability analysis
M. Pinedo

- Offline deterministic scheduling, stochastic scheduling and online deterministic scheduling: a comparative overview
S. Edgar, A. Burns
N. Navet, L. Cucu, R. Schott
- Statistical analysis of WCET for scheduling
- Probabilistic estimation of response times through large deviations
J.L. Diaz, D.F. Garcia, K. Kim, - Stochastic analysis of real-time systems
C.-G. Lee, L. Lo Bello, J.M.

Lopez, S.L. Min, O. Mirabella
L. Cucu, E.Tovar

A framework for response times analysis of

- fixed-priority tasks with stochastic inter-arrival times

Some references

A. Burns, G. Bernat, I. Broster - A probabilistic framework for schedulability analysis
M. Pinedo

- Offline deterministic scheduling, stochastic scheduling and online deterministic scheduling: a comparative overview
S. Edgar, A. Burns
N. Navet, L. Cucu, R. Schott
- Statistical analysis of WCET for scheduling
- Probabilistic estimation of response times through large deviations
J.L. Diaz, D.F. Garcia, K. Kim, - Stochastic analysis of real-time systems
C.-G. Lee, L. Lo Bello, J.M.

Lopez, S.L. Min, O. Mirabella L. Cucu, E.Tovar

A framework for response times analysis of

- fixed-priority tasks with stochastic inter-arrival times

Thank you for your attention

Open problems in stochastic real-time scheduling : introduction of dependent random variables

