Selfish scheduling with setup times

Laurent Gourvès ${ }^{1}$ Jérôme Monnot ${ }^{1}$ Orestis A. Telelis ${ }^{2}$
1. CNRS - LAMSADE Université Paris Dauphine
2. Computer Science Department, Aarhus University

September 18, 2009

Table of contents

(1) Strategic games
(2) Scheduling with setup

- Makespan mechanism
- Type ordering mechanisms
(3) Concluding remarks

Strategic games

- a set of players $P=\{1,2, \cdots, p\}$
- a strategy set Σ_{i} for every $i \in P$
- a pure state is a vector $S=\left(S_{1}, S_{2}, \cdots, S_{p}\right)$ in $\Sigma=\Sigma_{1} \times \Sigma_{2} \times \cdots \times \Sigma_{p}$ where S_{i} is the action of player i
- a function $f_{i}: \Sigma \rightarrow \mathbb{Z}$ for every $i \in P$

prisoner dilemma

	Silent		Betray		
	Silent		1		0
2 players $\Sigma_{1}=\{$ Silent, Betray $\}$ $\Sigma_{2}=\{$ Silent, Betray $\}$					
		1		10	
Betray		10		3	
	0		3		

Solution concept

Nash equilibrium

State where no player can unilaterally change his strategy and benefit

	Silent		Betray		
Silent			1		
	1		10		0
Betray		10			
	0		3		

(Betray, Betray) is the only pure Nash equilibrium

Nash equilibrium

Existence of a pure Nash equilibrium not guaranteed

football

players : goal keeper and stricker

	Left		Right	
Left		1		0
	0		1	
Right		0		1
	1		0	

Price of Anarchy

How far from socially optimal states are Nash equilibria ?

prisoner dilemma

	Silent	Betray	
Silent	1		
	1	10	
Betray	10		
	10	3	

$\operatorname{red}=\max \left\{f_{1}(S), f_{2}(S)\right\}$

Price of Anarchy (PoA)

Worst case ratio between the social cost of a Nash eq. and the socially optimal state

PoA=3 in the example

Analogy with the approximation ratio

Selfish scheduling

Each job is controlled by a player who chooses on which machine his job will be executed

- $P=$ the set of jobs, $\Sigma_{i}=$ the set of machines

Selfish scheduling

Each job is controlled by a player who chooses on which machine his job will be executed

- $P=$ the set of jobs, $\Sigma_{i}=$ the set of machines

Each machine has a public scheduling policy (algorithm) which, ideally, does not depend on the jobs executed on the other machines

- Mechanism $=$ a set of scheduling policies, one per machine

Selfish scheduling

Each job is controlled by a player who chooses on which machine his job will be executed

- $P=$ the set of jobs, $\Sigma_{i}=$ the set of machines

Each machine has a public scheduling policy (algorithm) which, ideally, does not depend on the jobs executed on the other machines

- Mechanism $=$ a set of scheduling policies, one per machine

Every player wants to minimize the completion of his own job, no matter how bad the whole schedule can be

- f_{i} to be minimized

Selfish scheduling

Price of Anarchy for selfish scheduling

sup $\frac{\text { makespan of Nash eq }}{\text { optimal makespan }}$ over all instances of the game
Remark: an optimum is not necessarily a Nash equilibrium

Selfish scheduling

Price of Anarchy for selfish scheduling

sup $\frac{\text { makespan of Nash eq }}{\text { optimal makespan }}$ over all instances of the game

Remark: an optimum is not necessarily a Nash equilibrium

Questions

(1) Which mechanism guarantees that a pure Nash eq. exists ?
(2) What is the price of anarchy of these mechanisms ?

bibliography

E. Koutsoupias and C. Papadimitriou, Worst Case Equilibria, STACS '99
T. Roughgarden and E. Tardos, How Bad is Selfish Routing?, JACM '02 and many others

Table of contents

(1) Strategic games
(2) Scheduling with setup

- Makespan mechanism
- Type ordering mechanisms
(3) Concluding remarks

Instance

m identical machines, n jobs, k job-types

- every job j has a type t_{j} and a processing length ℓ_{j}
- jobs of type θ incur a setup overhead of $w(\theta)$

setup $=$ loading packages, running an application, etc

a setup is run once on a machine for all jobs of the same type

example

3 machines, 3 job-types (red, blue, green), 7 jobs

$S_{1}=1 S_{2}=1 S_{3}=3 S_{4}=2 S_{5}=2 S_{6}=2 S_{7}=3$

Table of contents

(1) Strategic games
(2) Scheduling with setup

- Makespan mechanism
- Type ordering mechanisms
(3) Concluding remarks

Makespan mechanism

any job's completion time $=$ load of its machine

notation

For a state S :

- $c_{j}(S)=$ completion time of job j
- $C_{i}(S)=$ completion time of machine i
- $C(S)=$ makespan

$$
\begin{aligned}
c_{1}(S) & =c_{2}(S)=c_{1}(S) \\
c_{4}(S) & =c_{5}(S)=c_{7}(S)=c_{2}(S) \\
c_{3}(S) & =c_{6}(S)=c_{3}(S)
\end{aligned}
$$

Existence of a pure Nash equilibrium

Associate a vector of length n to every state S such that each coordinate is the completion of a job (sorted by non increasing value)

Existence of a pure Nash equilibrium

Associate a vector of length n to every state S such that each coordinate is the completion of a job (sorted by non increasing value)

Each time a player moves, the vector decreases lexicographically \Rightarrow A state with lexicographically smallest vector is a pure Nash equilibrium

PoA of the Makespan mechanism

notations

- n jobs ; $\mathcal{J}=$ set of all jobs
- k different job-types ; $\mathcal{T}=$ set of all types
- $S=$ state at Nash equilibrium ; $S^{*}=$ optimal state

Lower bounds on $C\left(S^{*}\right)$

(1) $m C\left(S^{*}\right) \geq \sum_{\theta \in \mathcal{T}} w(\theta)+\sum_{j \in \mathcal{J}} \ell_{j}$
(2) $C\left(S^{*}\right) \geq w\left(t_{j}\right)+\ell_{j}$ for all $j \in \mathcal{J}$
(3) $(k-1) C\left(S^{*}\right) \geq \sum_{\theta \in \mathcal{T} \backslash\{\xi\}} w(\theta)$ for all $\xi \in \mathcal{T}$

PoA of the Makespan mechanism : case $m \leq k$

upper bound

$$
C(S) \leq \sum_{\theta \in \mathcal{T}} w(\theta)+\sum_{j \in \mathcal{J}} \ell_{j} \leq m C\left(S^{*}\right) \Rightarrow P o A=\frac{C(S)}{C\left(S^{*}\right)} \leq m
$$

lower bound

Suppose that $m=k$.
For each type $\theta: w(\theta)=1, m$ jobs of length 0

Nash eq. with makespan m

One job of each type on every machine

Optimum with makespan 1

Same type jobs on a dedicated machine

L. Gourvès, J. Monnot, O. Telelis

PoA of the Makespan mechanism : case $m>k$

Assume $C(S)=C_{1}(S)$ w.l.o.g.
For any job j on machine 1 , and a machine $i \neq 1$:

- $c_{j}(S) \leq C_{i}(S)+w\left(t_{j}\right)+\ell_{j}$ if t_{j} does not appear on machine i
- $c_{j}(S) \leq C_{i}(S)+\ell_{j}$ if t_{j} already appears on machine i

$$
\begin{aligned}
(m-1) c_{j}(S) & \leq \sum_{i \neq 1} C_{i}(S)+\alpha w\left(t_{j}\right)+(m-1) \ell_{j} \\
C_{1}(S)+(m-1) c_{j}(S) & \leq \sum_{i=1}^{m} C_{i}(S)+\alpha w\left(t_{j}\right)+(m-1) \ell_{j} \\
m C_{1}(S) & \leq m \sum_{\theta \in \mathcal{T}} w(\theta)+\sum_{j \in \mathcal{J}} \ell_{j}+(m-1) \ell_{j}
\end{aligned}
$$

PoA of the Makespan mechanism : case $m>k$

$$
\begin{aligned}
m C_{1}(S) & \leq m \sum_{\theta \in \mathcal{T}} w(\theta)+\sum_{j \in \mathcal{J}} \ell_{j}+(m-1) \ell_{j} \\
m C_{1}(S) & \leq(m-1)\left(\sum_{\theta \in \mathcal{T} \backslash\left\{t_{j}\right\}} w(\theta)+w\left(t_{j}\right)+\ell_{j}\right)+\sum_{\theta \in \mathcal{T}} w(\theta)+\sum_{j \in \mathcal{J}} \ell_{j} \\
C_{1}(S) & \leq \frac{m-1}{m}\left(\sum_{\theta \in \mathcal{T} \backslash\left\{t_{j}\right\}} w(\theta)+w\left(t_{j}\right)+\ell_{j}\right)+\frac{1}{m}\left(\sum_{\theta \in \mathcal{T}} w(\theta)+\sum_{j \in \mathcal{J}} \ell_{j}\right) \\
C(S) & \leq \frac{m-1}{m}\left((k-1) C\left(S^{*}\right)+C\left(S^{*}\right)\right)+C\left(S^{*}\right)=\left(k+1-\frac{k}{m}\right) C\left(S^{*}\right) \\
P o A & \leq k+1-\frac{k}{m}
\end{aligned}
$$

PoA of the Makespan mechanism : case $m>k$

Lower bound when $k=3$

Nash Equilibrium

makespan $k+1$

Optimum

makespan $1+\epsilon$

PoA

Theorem
 Under the makespan mechanism, the PoA of the scheduling game with setup times is $\min \{m, k+1-\epsilon\}$

Table of contents

(1) Strategic games
(2) Scheduling with setup

- Makespan mechanism
- Type ordering mechanisms
(3) Concluding remarks

Type ordering mechanisms

The scheduling policy of every machine i is as follows:

- batch scheduling of same type jobs
- preemptive execution of all jobs in a batch s.t. completion of a job $=$ completion time of its batch
- type batches are executed serially, following an order \prec_{i} on the type indexes

$$
\begin{aligned}
& c_{1}(S)=c_{2}(S) \\
& c_{5}(S)=c_{6}(S)
\end{aligned}
$$

Existence

Theorem

A pure Nash equilibrium exists for every type ordering mechanism

Constructive proof

$\prec:=\prec_{1}$
Start from an empty solution and repeat until all jobs are assigned
(1) Find the earliest type θ according to \prec, with at least one unassigned job.
(2) Let j be the largest length unassigned job with $t_{j}=\theta$.
(3) Pick $i \in \mathcal{M}$ minimizing completion time of j (break ties in favor of $\left.i \in M_{\prec}\right)$.
(3) If $i \in M_{\prec}$ set $S_{j}=i$ else $\prec:=\prec_{i}$.

A general Lower bound

Lemma Erdos-Szekeres (1935), Seidenberg (1959)
Every sequence of x distinct numbers possesses a monotone subsequence of size at least \sqrt{x}

$$
\begin{aligned}
& 123456789 \\
& 321654987
\end{aligned}
$$

A general Lower bound

Lemma

Every sequence of x distinct numbers possesses a monotone subsequence of size at least \sqrt{x}

$$
\begin{aligned}
& 123456789 \\
& 321654987
\end{aligned}
$$

Corollary

If $k \geq x^{2^{m-1}}$ then there is a subset of x types $\theta_{1}, \cdots, \theta_{x}$ such that

$$
\theta_{1} \prec_{i} \theta_{2} \prec_{i} \cdots \prec_{i} \theta_{x} \text { or } \theta_{x} \prec_{i} \theta_{x-1} \prec_{i} \cdots \prec_{i} \theta_{1}
$$

for all machine i

A general Lower bound

If there are $2 m-1$ types $\theta_{1}, \cdots, \theta_{2 m-1}$ such that

- $\theta_{1} \prec \theta_{2} \prec \cdots \prec \theta_{2 m-1}$ holds on α machines
- $\theta_{2 m-1} \prec \theta_{2 m-2} \prec \cdots \prec \theta_{1}$ holds on δ machines then one can build an instance with PoA $\geq \frac{m+1}{2}$

Ascending order $\bullet \prec \bullet \prec \bullet \prec \bullet \prec \bullet \prec \bullet \prec \bullet$ Descending order $\bullet \prec \prec \prec \bullet \prec \prec \bullet \prec \bullet \prec \bullet$

Nash eq. with makespan $m+1$
Optimum with makespan 2

A general Lower bound

Theorem

when $k \geq(2 m-1)^{2^{m-1}}$, every type ordering mechanism has a $\mathrm{PoA} \geq \frac{m+1}{2}$

An optimal mechanism

mechanism A-D

Half of the machines schedules the batches by ascending index Half of the machines schedules the batches by descending index

Theorem

Under the A-D mechanism, the PoA of the scheduling game with setup times is $\min \left\{\frac{m+1}{2}, \frac{k+3}{2}-\epsilon\right\}$

Table of contents

(1) Strategic games

(2) Scheduling with setup

- Makespan mechanism
- Type ordering mechanisms
(3) Concluding remarks

Strong equilibrium

No group of players can change their strategy and reach a state where they all benefit

- existence of strong equilibria for makespan and A-D
- PoA for strong equilibria

Open problems

- Better coordination mechanisms for identical machines
- Other machine environments

Thank you!

A general Lower bound

If there are m types $\theta_{1}, \cdots, \theta_{m}$ such that $\theta_{1} \prec \theta_{2} \prec \cdots \prec \theta_{m}$ on every machine then one can build an instance with $\mathrm{PoA} \geq m$

- $w\left(\theta_{1}\right)=w\left(\theta_{2}\right)=\ldots=w\left(\theta_{m}\right)=1$
- m jobs with length 0 per type

Nash eq. with makespan m

Optimum with makespan 1

Strong Equilibria

Strong equilibrium

No group of players can change their strategy and reach a state where they all benefit

mechanism Makespan

A strong equilibrium always exists
The PoA for strong equilibria is

- $3 / 2$ when $m=2$
- 2 when $m \geq 3$

mechanism A-D

A strong equilibrium exists when $m=2$, open when $m \geq 3$
PoA for strong equilibria $=$ PoA for Nash equilibria

