Selfish scheduling with setup times

Laurent Gourvès¹ Jérôme Monnot¹ Orestis A. Telelis²

1. CNRS - LAMSADE Université Paris Dauphine

2. Computer Science Department, Aarhus University

September 18, 2009

Table of contents

1 Strategic games

2 Scheduling with setup

- Makespan mechanism
- Type ordering mechanisms

Strategic games

- a set of players $P = \{1, 2, \cdots, p\}$
- a strategy set Σ_i for every $i \in P$
 - a *pure state* is a vector $S = (S_1, S_2, \dots, S_p)$ in $\Sigma = \Sigma_1 \times \Sigma_2 \times \dots \times \Sigma_p$ where S_i is the action of player *i*

• a function
$$f_i: \Sigma \to \mathbb{Z}$$
 for every $i \in P$

prisoner dilemma

			Silent			Betray	
				1			0
2 players	Silent						
$\Sigma_1 = \{Silent, Betray\}$		1			10		
$\Sigma_2 = \{Silent, Betray\}$			1	10			3
	Betray						
		0			3		

L. Gourvès, J. Monnot, O. Telelis Selfish scheduling with setup times

Solution concept

Nash equilibrium

State where no player can *unilaterally* change his strategy and benefit

		Silent			Betray	
			1			0
Silent						
	1			10		
			10			3
Betray					*	
	0			3		

(Betray, Betray) is the only pure Nash equilibrium

Nash equilibrium

Existence of a **pure** Nash equilibrium **not** guaranteed

football

players : goal keeper and stricker

	Left		Right		
		1		0	
Left					
	0		1		
		0		1	
Right					
	1		0		

Price of Anarchy

How far from socially optimal states are Nash equilibria ?



 $\mathsf{red} = \max\{f_1(S), f_2(S)\}$

Price of Anarchy (PoA)

Worst case ratio between the social cost of a Nash eq. and the socially optimal state

PoA=3 in the example

Analogy with the approximation ratio

Selfish scheduling

Each job is controlled by a player who chooses on which machine his job will be executed

• P = the set of jobs, Σ_i = the set of machines

Selfish scheduling

Each job is controlled by a player who chooses on which machine his job will be executed

• P = the set of jobs, $\Sigma_i =$ the set of machines

Each machine has a *public* scheduling policy (algorithm) which, ideally, does not depend on the jobs executed on the other machines

• Mechanism = a set of scheduling policies, one per machine

Selfish scheduling

Each job is controlled by a player who chooses on which machine his job will be executed

• P = the set of jobs, $\Sigma_i =$ the set of machines

Each machine has a *public* scheduling policy (algorithm) which, ideally, does not depend on the jobs executed on the other machines

• Mechanism = a set of scheduling policies, one per machine

Every player wants to minimize the completion of his own job, no matter how bad the whole schedule can be

• f_i to be minimized

Selfish scheduling

Price of Anarchy for selfish scheduling

 $\mathsf{sup}\,\frac{\mathrm{makespan}\,\,\mathrm{of}\,N\mathrm{ash}\,\mathrm{eq}}{\mathrm{optimal}\,\,\mathrm{makespan}}$ over all instances of the game

Remark: an optimum is not necessarily a Nash equilibrium

Selfish scheduling

Price of Anarchy for selfish scheduling

 $\mathsf{sup}\,\frac{\mathrm{makespan}\,\,\mathrm{of}\,\,\mathrm{Nash}\,\,\mathrm{eq}}{\mathrm{optimal}\,\,\mathrm{makespan}}$ over all instances of the game

Remark: an optimum is not necessarily a Nash equilibrium

Questions

Which mechanism guarantees that a pure Nash eq. exists ?

2 What is the price of anarchy of these mechanisms ?

bibliography

- E. Koutsoupias and C. Papadimitriou, Worst Case Equilibria, STACS '99
- T. Roughgarden and E. Tardos, How Bad is Selfish Routing?, JACM '02 and many others

Makespan mechanism Type ordering mechanisms

Table of contents

Strategic games

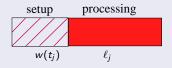
2 Scheduling with setup

- Makespan mechanism
- Type ordering mechanisms

Instance

m identical machines, n jobs, k job-types

- every job j has a **type** t_j and a **processing length** ℓ_j
- jobs of type θ incur a **setup overhead** of $w(\theta)$

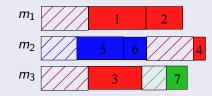


 $\mathsf{setup} = \mathsf{loading} \ \mathsf{packages}, \ \mathsf{running} \ \mathsf{an} \ \mathsf{application}, \ \mathsf{etc}$

a setup is run once on a machine for all jobs of the same type

example

3 machines, 3 job-types (red, blue, green), 7 jobs



 $S_1 = 1 \ S_2 = 1 \ S_3 = 3 \ S_4 = 2 \ S_5 = 2 \ S_6 = 2 \ S_7 = 3$

Makespan mechanism Type ordering mechanisms

Table of contents

Strategic games

2 Scheduling with setup

- Makespan mechanism
- Type ordering mechanisms

3 Concluding remarks

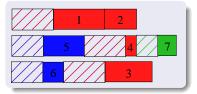
Makespan mechanism

any job's completion time = load of its machine

notation

For a state S:

- $c_j(S) = \text{completion time of job } j$
- $C_i(S) =$ completion time of machine i
- C(S) = makespan



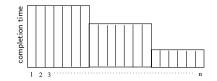
$$c_1(S) = c_2(S) = C_1(S)$$

$$c_4(S) = c_5(S) = c_7(S) = C_2(S)$$

$$c_3(S) = c_6(S) = C_3(S)$$

Existence of a pure Nash equilibrium

Associate a vector of length n to every state S such that each coordinate is the completion of a job (sorted by non increasing value)



Existence of a pure Nash equilibrium

Associate a vector of length n to every state S such that each coordinate is the completion of a job (sorted by non increasing value)

Each time a player moves, the vector decreases lexicographically \Rightarrow A state with lexicographically smallest vector is a pure Nash equilibrium

Makespan mechanism Type ordering mechanisms

PoA of the Makespan mechanism

notations

- *n* jobs ; $\mathcal{J} = \mathsf{set}$ of all jobs
- k different job-types ; T = set of all types
- S = state at Nash equilibrium ; $S^* =$ optimal state

Lower bounds on $C(S^*)$

Makespan mechanism Type ordering mechanisms

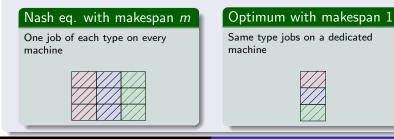
PoA of the Makespan mechanism : case $m \leq k$

upper bound

$$C(S) \leq \sum_{\theta \in \mathcal{T}} w(\theta) + \sum_{j \in \mathcal{J}} \ell_j \leq mC(S^*) \Rightarrow PoA = \frac{C(S)}{C(S^*)} \leq m$$

lower bound

Suppose that m = k. For each type θ : $w(\theta) = 1$, *m* jobs of length 0



L. Gourvès, J. Monnot, O. Telelis

Selfish scheduling with setup times

Makespan mechanism Type ordering mechanisms

PoA of the Makespan mechanism : case m > k

Assume $C(S) = C_1(S)$ w.l.o.g. For any job *j* on machine 1, and a machine $i \neq 1$:

- $c_j(S) \leq C_i(S) + w(t_j) + \ell_j$ if t_j does not appear on machine i
- $c_j(S) \le C_i(S) + \ell_j$ if t_j already appears on machine i

$$egin{array}{rll} (m-1)c_j(S) &\leq& \sum_{i
eq 1} C_i(S) + lpha w(t_j) + (m-1)\ell_j \ C_1(S) + (m-1)c_j(S) &\leq& \sum_{i=1}^m C_i(S) + lpha w(t_j) + (m-1)\ell_j \ m \, C_1(S) &\leq& m \sum_{ heta \in \mathcal{T}} w(heta) + \sum_{i\in\mathcal{J}} \ell_j + (m-1)\ell_j \end{array}$$

Makespan mechanism Type ordering mechanisms

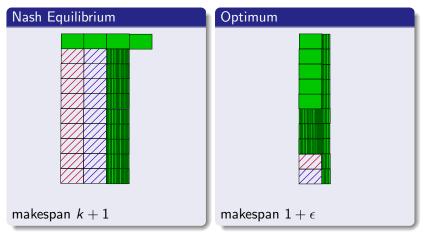
PoA of the Makespan mechanism : case m > k

$$\begin{split} m \ C_1(S) &\leq m \sum_{\theta \in \mathcal{T}} w(\theta) + \sum_{j \in \mathcal{J}} \ell_j + (m-1)\ell_j \\ m \ C_1(S) &\leq (m-1) \Big(\sum_{\theta \in \mathcal{T} \setminus \{t_j\}} w(\theta) + w(t_j) + \ell_j \Big) + \sum_{\theta \in \mathcal{T}} w(\theta) + \sum_{j \in \mathcal{J}} \ell_j \\ C_1(S) &\leq \frac{m-1}{m} \Big(\sum_{\theta \in \mathcal{T} \setminus \{t_j\}} w(\theta) + w(t_j) + \ell_j \Big) + \frac{1}{m} \Big(\sum_{\theta \in \mathcal{T}} w(\theta) + \sum_{j \in \mathcal{J}} \ell_j \Big) \\ C(S) &\leq \frac{m-1}{m} \big((k-1)C(S^*) + C(S^*) \big) + C(S^*) = (k+1-\frac{k}{m})C(S^*) \\ PoA &\leq k+1-\frac{k}{m} \end{split}$$

Makespan mechanism Type ordering mechanisms

PoA of the Makespan mechanism : case m > k

Lower bound when k = 3



Makespan mechanism Type ordering mechanisms

PoA

Theorem

Under the makespan mechanism, the PoA of the scheduling game with setup times is $\min\{m,k+1-\epsilon\}$

Makespan mechanism Type ordering mechanisms

Table of contents

Strategic games

2 Scheduling with setup

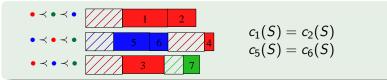
- Makespan mechanism
- Type ordering mechanisms

3 Concluding remarks

Type ordering mechanisms

The scheduling policy of every machine *i* is as follows:

- batch scheduling of same type jobs
- preemptive execution of all jobs in a batch s.t. completion of a job = completion time of its batch
- type batches are executed serially, following an order ≺_i on the type indexes



Makespan mechanism Type ordering mechanisms

Existence

Theorem

A pure Nash equilibrium exists for every type ordering mechanism

Constructive proof

 $\prec := \prec_1$

Start from an empty solution and repeat until all jobs are assigned

- Find the earliest type θ according to \prec , with at least one unassigned job.
- 2 Let j be the largest length unassigned job with $t_j = \theta$.
- Pick i ∈ M minimizing completion time of j (break ties in favor of i ∈ M_≺).

• If
$$i \in M_{\prec}$$
 set $S_j = i$ else $\prec := \prec_i$.

Makespan mechanism Type ordering mechanisms

A general Lower bound

Lemma	Erdos-Szekeres (1935), Seidenberg (1959)			
Every sequence of x distinct numbers possesses a monotone subsequence of size at least \sqrt{x}				
123	456789			
3 2 1	654987			

Makespan mechanism Type ordering mechanisms

A general Lower bound

Lemma	Erdos-Szekeres (1935), Seidenberg (1959)
Every sequence of x distinct num	bers possesses a monotone
subsequence of size at least \sqrt{x}	
123	456789
321	654987

Corollary

If $k \geq x^{2^{m-1}}$ then there is a subset of x types $heta_1, \cdots, heta_x$ such that

$$\theta_1 \prec_i \theta_2 \prec_i \cdots \prec_i \theta_x$$
 or $\theta_x \prec_i \theta_{x-1} \prec_i \cdots \prec_i \theta_1$

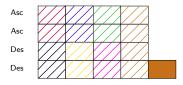
for all machine i

A general Lower bound

If there are
$$2m - 1$$
 types $\theta_1, \dots, \theta_{2m-1}$ such that
• $\theta_1 \prec \theta_2 \prec \dots \prec \theta_{2m-1}$ holds on α machines
• $\theta_{2m-1} \prec \theta_{2m-2} \prec \dots \prec \theta_1$ holds on δ machines

then one can build an instance with $PoA \ge \frac{m+1}{2}$

Ascending order $\bullet \prec \bullet \prec \bullet \prec \bullet \prec \bullet \prec \bullet \prec \bullet$ Descending order $\bullet \prec \bullet \prec \bullet \prec \bullet \prec \bullet \prec \bullet \prec \bullet$



Nash eq. with makespan m+1L. Gourvès, J. Monnot, O. Telelis Optimum with makespan 2

Selfish scheduling with setup times

Makespan mechanism Type ordering mechanisms

A general Lower bound

Theorem

when
$$k \geq (2m-1)^{2^{m-1}}$$
, every type ordering mechanism has a $\mathsf{PoA} \geq rac{m+1}{2}$

Makespan mechanism Type ordering mechanisms

An optimal mechanism

mechanism A-D

Half of the machines schedules the batches by **ascending** index Half of the machines schedules the batches by **descending** index

Theorem

Under the A–D mechanism, the PoA of the scheduling game with setup times is $\min\{\frac{m+1}{2},\frac{k+3}{2}-\epsilon\}$

Table of contents

1 Strategic games

Scheduling with setup
 Makespan mechanism

• Type ordering mechanisms

Strong equilibrium

No group of players can change their strategy and reach a state where they **all** benefit

- existence of strong equilibria for makespan and A-D
- PoA for strong equilibria

Open problems

- Better coordination mechanisms for identical machines
- Other machine environments

Thank you!

A general Lower bound

If there are *m* types $\theta_1, \cdots, \theta_m$ such that $\theta_1 \prec \theta_2 \prec \cdots \prec \theta_m$ on every machine then one can build an instance with PoA $\geq m$

•
$$w(\theta_1) = w(\theta_2) = \ldots = w(\theta_m) = 1$$

m jobs with length 0 per type

Strong Equilibria

Strong equilibrium

No group of players can change their strategy and reach a state where they **all** benefit

mechanism Makespan

A strong equilibrium always exists The PoA for strong equilibria is

mechanism A-D

A strong equilibrium exists when m = 2, open when $m \ge 3$ PoA for strong equilibria = PoA for Nash equilibria