
Multiprocessor Scheduling Problem
with Communication Delays

Tanja Davidović, Leo Liberti , Nelson Maculan, Nenad Mladenović, Pedro Teixeira

SANU, Belgrade, Serbia and Montenegro

LIX, École Polytechnique, France

COPPE, Rio de Janeiro, Brazil

LIP6, Gotha – p. 1/18

Summary of Talk

Problem definition

Classic formulation

Usual vs. compact linearization

Packing formulation

Computational results

LIP6, Gotha – p. 2/18

Problem definition

Scheduling problem: assign n tasks to an architecture
of p homogeneous processors such that the makespan
is minimized

Task precedence relations modelled by a weighted
Directed Acyclic Graph (DAG); arc costs cij indicate
amount of data passed from task i to task j if i is a
precedent of j

Processor architecture modelled by a distance matrix;
distance between two processors k, l given by dkl

Delays γkl
ij proportional to cijdkl if task i is assigned to

processor k and precedes task j, assigned to processor
l 6= k

LIP6, Gotha – p. 3/18

Simple example

Instance: D =

(

0 1

1 0

)

n1

n2

n3

n4
n5

-

-

�
�

�*

H
H

Hj

3

5

12

8

i 1 2 3 4 5

Li 2 3 5 8 4

LIP6, Gotha – p. 4/18

Classic formulation I

Indices: set of tasks V , set of processors P

Parameters: Weighted DAG G = (V,A, c) for task
precedences, symmetric distance matrix D for
processor architecture, computation times Li for jobs
i ∈ V , α ≫ 0 sufficiently large penalty coefficient

Variables:

ys
jk =











1 task j is s-th task
executed on processor k

0 otherwise

∀ j, s ∈ V,

∀ k ∈ P

tj = starting time of task j ∀ j ∈ V

LIP6, Gotha – p. 5/18

Classic formulation II

Minimize makespan:

min
y,t

max
j∈V

{tj + Lj}

Each task is assigned to only one processor in exactly one slot:

∑

k∈P

∑

s∈V

ys
jk = 1 ∀j ∈ V

Each processor has at most one task assigned to the first slot

∑

j∈V

y1
jk ≤ 1 ∀k ∈ P

Do not leave any empty slot on any processor

∑

j∈V

ys
jk ≤

∑

j∈V

ys−1

jk ∀k ∈ P, s ∈ V \{1}

LIP6, Gotha – p. 6/18

Classic formulation III

Starting time of task j depends on starting time of task i if i, j

executed on the same processor

tj ≥ ti +Li −α



2 −



ys
ik +

|V |
∑

r=s+1

yr
jk







 ∀k ∈ P, s ∈ V \{n}, i, j ∈ V

Consider communication delays

tj ≥ ti + Li +
∑

k,l∈P

∑

s,r∈V

γkl
ij ys

ikyr
jl ∀j ∈ V, i : (i, j) ∈ A

y binary, t ≥ 0 real

LIP6, Gotha – p. 7/18

Usual linearization

Work in general framework: variables xi, i ≤ n and
quadratic terms xixj , {i, j} ∈ E

Substitute xixj with linearization variables wij, add
constraints wij = xixj

Replace such constraints by the following:

wij ≤ xi

wij ≤ xj

wij ≥ xi + xj − 1

Usual linearization is an exact reformulation

Adds 3|E| (that is, O(n2)) constraints to the formulation

LIP6, Gotha – p. 8/18

Compact linearization

Multiply assignment constraint
∑n

i=1
xi = 1 by each xj

⇒ get
∑n

i=1
xixj = xj (j ≤ n)

Substitute bilinear terms with wij,
⇒ get

∑n
i=1

wij = xj (j ≤ n)

Replace constraints wij = xixj with:

wij = wji ∀ {i, j} ∈ E (4)
n
∑

i=1

wij = xj ∀j ≤ n (5)

Constraints wij = wji result in variable elimination in
presolve stage: only adds n constraints

Can be extended to cases with many assignment
constraints

LIP6, Gotha – p. 9/18

Classic formulation IV

Compact linearization reduces linearization constraints
from |A||V |2|P |2 to |V |3|P |

Furthermore, it tightens linear relaxation in deepest BB
nodes, speeding up convergence (empirical
observation)

Computational savings: 1 to 2 orders of magnitude
average

However, very large CPU timings (over 27 hours for
instance with 9 tasks on 3 processors, with compact
linearization — 105 hours with usual linearization)

Experiments carried out on PIV 2.66GHz 1GB RAM

Limited usefulness

LIP6, Gotha – p. 10/18

Simple example again

Instance: D =

(

0 1

1 0

)

n1

n2

n3

n4
n5

-

-

�
�

�*

H
H

Hj

3

5

12

8

i 1 2 3 4 5

Li 2 3 5 8 4

LIP6, Gotha – p. 11/18

Simple example: solution

Optimal solution: makespan=20

PID

t

1

2 T1

T2 T3T4 T5

0 3 11 16 20

delay ≥ 3 if changing processor

≥ 5 ≥ 8
≥ 12

LIP6, Gotha – p. 12/18

Packing formulation I

Consider a “big rectangle” Tmax × |P |, where Tmax is an
upper bound for the makespan

Task j represented by a rectangular strip Lj × 1

Idea: pack strips into big rectangle
We get much more efficient formulation

LIP6, Gotha – p. 13/18

Packing formulation II

Indices and parameters as above

Variables:

tj ≥ 0 : starting time of task j∀ j ∈ V

yj ∈ Z+ : processor ID where task j is executed ∀ j ∈ V

zjk ∈ {0, 1} :







1 task j assigned to proc. k

0 otherwise







∀ j ∈ V,

∀ k ∈ P

σij ∈ {0, 1} :







1 task i finishes before j starts

0 otherwise







∀ i, j ∈ V

ǫij ∈ {0, 1} :







1 PID of task i < PID of task j

0 otherwise







∀ i, j ∈ V

LIP6, Gotha – p. 14/18

Packing formulation II

Minimize makespan

min max
j∈V

{tj + Lj}

Relative positioning possibilities

σij + σji + ǫij + ǫji ≥ 1 ∀ i 6= j ∈ V

σij + σji ≤ 1 ∧ ǫij + ǫji ≤ 1 ∀ i 6= j ∈ V

Constrain starting times if task i finishes before j starts

tj ≥ ti + Li − (1 − σij)Tmax ∀ i 6= j ∈ V

Constrain PIDs if task j has larger PID than i

yj ≥ yi + 1 − (1 − ǫij)|P | ∀ i 6= j ∈ V

LIP6, Gotha – p. 15/18

Packing formulation III

Task precendences

σij = 1 ∀j ∈ V, i : (i, j) ∈ A

Assignments and relations between PIDs and
assignment variables

∑

k∈P

zik = 1 ∧
∑

k∈P

kzik = yi ∀i ∈ V

Communication delays

tj ≥ ti + Li +
∑

k,l∈P

γkl
ij zikzjl ∀j ∈ V, i : (i, j) ∈ A

LIP6, Gotha – p. 16/18

Packing formulation IV

Variables: from 3 indices to 2 (linearization variables:
from 6 indices to 4)

Expect reduction in CPU time of at least O(|P |2)

Expect compact linearization to make a difference over
usual linearization for dense precedence graphs

Average CPU time reduction factor: 5000
(much better than O(|P |2) in our examples)

Found solutions to medium-scale MSPCD instances in
reasonable time

Compact linearization is beneficial only for dense
precedence graphs

LIP6, Gotha – p. 17/18

Conclusions and Future work

Presented two formulations for MSPCD

Packing formulation much tighter than classic
formulation

Compact linearization always beneficial in classic
formulation, but only beneficial for dense graphs in
packing formulation

Formulation-based solution approach feasible for
medium-scale MSPCD instances

Ongoing and future work: additional valid cuts and
combinatorial branch-and-bound

LIP6, Gotha – p. 18/18

	Summary of Talk
	Problem definition
	Simple example
	Classic formulation I
	Classic formulation II
	Classic formulation III
	Usual linearization
	Compact linearization
	Classic formulation IV
	Simple example again
	Simple example: solution
	Packing formulation I
	Packing formulation II
	Packing formulation II
	Packing formulation III
	Packing formulation IV
	Conclusions and Future work

