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Problem definition

-

Scheduling problem: assign n tasks to an architecture
of p homogeneous processors such that the makespan
IS minimized

Task precedence relations modelled by a weighted
Directed Acyclic Graph (DAG); arc costs ¢;; Indicate

amount of data passed from task ; to task j if i Is a
precedent of j

Processor architecture modelled by a distance matrix;
distance between two processors k, [ given by dy;

Delays ~;/ proportional to ¢;;dy, if task i is assigned to
processor k£ and precedes task j, assigned to processor

|+ k
J
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B Simple example

=

Instance: D = 01
1 0




B Classic formulation |

- N

® Indices. set of tasks V/, set of processors P

# Parameters: Weighted DAG G = (V, A, ¢) for task
precedences, symmetric distance matrix D for
processor architecture, computation times L; for jobs
i €V, a> 0 sufficiently large penalty coefficient

® Variables:
1 task j Is s-th task |
s ViselV,
Yi, = executed on processor k
/ . VkeP
0 otherwise
t; = startingtimeoftask; VjeV
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Classic formulation |l

Minimize makespan:

inmaxit; + L;
min max{t; + L}

Each task is assigned to only one processor in exactly one slot:

Y > y=1VeV

keP scV

Each processor has at most one task assigned to the first slot

Y Y <1VkeP
JjeV

Do not leave any empty slot on any processor

Zyjk < Zyjk_l Vk e P,s € V\{1}

Jjev Jjev
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I.;{;- Classic formulation Il

-

Starting time of task 5 depends on starting time of task 7 if 7, 5
executed on the same processor

V]
t; >ti+Li—o (2 (ykar > yjk)> Vke P,seV\{n},i,j eV
r=s-+1

® Consider communication delays

>ti+Lit Y Y vy Vi€ Vi (ij) € A
k,leP s,reV

®» y binary, ¢t > 0 real
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By
B

9

°

Usual linearization

Work in general framework: variables z;,i < n and
quadratic terms z;x;, {i,j} € E

Substitute x;x; with linearization variables w;;, add
constraints w;; = z;x;

Replace such constraints by the following:

Ly

Lj

£
IV IA A

a:z-+a:j—1

Usual linearization I1s an exact reformulation
Adds 3|E| (thatis, O(n?)) constraints to the formulation

|
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B
.

Compact linearization

Multiply assignment constraint > ; x; = 1 by each z; T
= get> ", rivi = xj (j <n)

Substitute bilinear terms with w;;,
=get>., ywy =1z (j <n)

Replace constraints w;; = z;z; with:

wi; = wj; V{,j}EFR (4)
1=1

Constraints w;; = wj; result in variable elimination in
presolve stage: only adds 7 constraints

Can be extended to cases with many assignment
constraints J
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°

Classic formulation IV

-

Compact linearization reduces linearization constraints
from |A||V|?|P|? to |V |3| P

Furthermore, it tightens linear relaxation in deepest BB
nodes, speeding up convergence (empirical
observation)

Computational savings: 1 to 2 orders of magnitude
average

However, very large CPU timings (over 27 hours for
Instance with 9 tasks on 3 processors, with compact
linearization — 105 hours with usual linearization)

Experiments carried out on PIV 2.66GHz 1GB RAM
Limited usefulness

|
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Hy Simple example again

=

Instance: D = 01
1 0




Hy Simple example: solution

=

Optimal solution: makespan=20

-

PID
delay > 3 if changing processor
2| 11
> 12
1 T225 Tr— >3 13— =215
0 3 11 16 20




B Packing formulation |

- N

o Consider a “big rectangle” Timax x |P|, where Tmax IS an
upper bound for the makespan

# Task j represented by a rectangular strip L; x 1

»# lIdea: pack strips into big rectangle
#® We get much more efficient formulation
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=

-

Packing formulation Il

# Indices and parameters as above

9

Variables.

t; >0

Yj € Ly

ik S {07 1}

0ij €10,1}

€i; € 10,1}

starting time of task jV j € V

processor ID where task j is executedV j € V

/

1

0
\

task ;5 assigned to proc. k

otherwise

task ¢ finishes before j starts

otherwise

PID of task < PID of task j

otherwise

VieV,
VkeP

Vi,geV

Vi, geV

|
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B Packing formulation Il

=

# Minimize makespan

min maxi{t; + L
je‘;({ J J}

# Relative positioning possibilities

# Constrain starting times if task i finishes before ; starts
ti>ti+Li—(1—0ij)Tmax Vi#jeV
# Constrain PIDs if task 5 has larger PID than ;

o b > it 1—(1—e)|P| YidtjeV |
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Hy Packing formulation Il

=

#® Task precendences
Oij:1 VjEV,i:(i,j)EA

# Assignments and relations between PIDs and
assignment variables

Zzik:1 A Zkzik:yi VieV

keP keP

# Communication delays

ti>ti+Li+ Y eme VieVi:(ij) €A
k,leP
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Packing formulation 1V

-

Variables: from 3 indices to 2 (linearization variables:
from 6 indices to 4)

Expect reduction in CPU time of at least O(|P|?)

Expect compact linearization to make a difference over
usual linearization for dense precedence graphs

Average CPU time reduction factor: 5000
(much better than O(|P|?) in our examples)

Found solutions to medium-scale MSPCD instances In
reasonable time

Compact linearization is beneficial only for dense
precedence graphs

|
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B, Conclusions and Future work

- N

® Presented two formulations for MSPCD

# Packing formulation much tighter than classic
formulation

# Compact linearization always beneficial in classic
formulation, but only beneficial for dense graphs in
packing formulation

# Formulation-based solution approach feasible for
medium-scale MSPCD instances

# Ongoing and future work: additional valid cuts and
combinatorial branch-and-bound
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