

Multiprocessor Scheduling Problem with Communication Delays

Tanja Davidović, Leo Liberti, Nelson Maculan, Nenad Mladenović, Pedro Teixeira

SANU, Belgrade, Serbia and Montenegro LIX, École Polytechnique, France COPPE, Rio de Janeiro, Brazil

Summary of Talk

- Problem definition
- Classic formulation
- Usual vs. compact linearization
- Packing formulation
- Computational results

Problem definition

- Scheduling problem: assign n tasks to an architecture of p homogeneous processors such that the makespan is minimized
- Task precedence relations modelled by a weighted Directed Acyclic Graph (DAG); arc costs c_{ij} indicate amount of data passed from task i to task j if i is a precedent of j
- Processor architecture modelled by a distance matrix; distance between two processors k, l given by d_{kl}
- Delays γ_{ij}^{kl} proportional to $c_{ij}d_{kl}$ if task *i* is assigned to processor *k* and precedes task *j*, assigned to processor $l \neq k$

Simple example

Instance:
$$D = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

i	1	2	3	4	5
L_i	2	3	5	8	4

Classic formulation I

- \blacksquare Indices: set of tasks V, set of processors P
- Parameters: Weighted DAG G = (V, A, c) for task precedences, symmetric distance matrix D for processor architecture, computation times L_i for jobs $i \in V$, $\alpha \gg 0$ sufficiently large penalty coefficient
 - Variables:

$$y_{jk}^{s} = \begin{cases} 1 & \text{task } j \text{ is } s\text{-th task} \\ & \text{executed on processor } k \\ 0 & \text{otherwise} \end{cases} \quad \begin{array}{l} \forall \ j, s \in V, \\ \forall \ k \in P \end{cases}$$

 $t_j = \text{starting time of task } j \quad \forall j \in V$

Classic formulation II

Minimize makespan:

 $\min_{y,t} \max_{j \in V} \{t_j + L_j\}$

$$\sum_{k \in P} \sum_{s \in V} y_{jk}^s = 1 \; \forall j \in V$$

Each processor has at most one task assigned to the first slot

$$\sum_{j \in V} y_{jk}^1 \leq 1 \; \forall k \in P$$

Do not leave any empty slot on any processor

$$\sum_{j \in V} y_{jk}^s \le \sum_{j \in V} y_{jk}^{s-1} \; \forall k \in P, s \in V \setminus \{1\}$$

Classic formulation III

Starting time of task j depends on starting time of task i if i, j executed on the same processor

$$t_j \ge t_i + L_i - \alpha \left(2 - \left(y_{ik}^s + \sum_{r=s+1}^{|V|} y_{jk}^r \right) \right) \quad \forall k \in P, s \in V \setminus \{n\}, i, j \in V$$

Consider communication delays

$$t_j \ge t_i + L_i + \sum_{k,l \in P} \sum_{s,r \in V} \gamma_{ij}^{kl} y_{ik}^s y_{jl}^r \; \forall j \in V, i : (i,j) \in A$$

• y binary, $t \ge 0$ real

Usual linearization

- Work in general framework: variables $x_i, i \le n$ and quadratic terms $x_i x_j, \{i, j\} \in E$
- Substitute $x_i x_j$ with linearization variables w_{ij} , add constraints $w_{ij} = x_i x_j$
- Replace such constraints by the following:

$$w_{ij} \leq x_i$$

$$w_{ij} \leq x_j$$

$$w_{ij} \geq x_i + x_j - 1$$

- Usual linearization is an exact reformulation
- Adds 3|E| (that is, $O(n^2)$) constraints to the formulation

Compact linearization

- Multiply assignment constraint $\sum_{i=1}^{n} x_i = 1$ by each x_j $\Rightarrow get \sum_{i=1}^{n} x_i x_j = x_j (j \le n)$
- Substitute bilinear terms with w_{ij} , $\Rightarrow get \sum_{i=1}^{n} w_{ij} = x_j \ (j \le n)$
- Replace constraints $w_{ij} = x_i x_j$ with:

$$w_{ij} = w_{ji} \quad \forall \{i, j\} \in E \quad (4)$$
$$\sum_{i=1}^{n} w_{ij} = x_j \quad \forall j \le n \quad (5)$$

- Constraints $w_{ij} = w_{ji}$ result in variable elimination in presolve stage: only adds n constraints
- Can be extended to cases with many assignment constraints

Classic formulation IV

- Compact linearization reduces linearization constraints from $|A||V|^2|P|^2$ to $|V|^3|P|$
- Furthermore, it tightens linear relaxation in deepest BB nodes, speeding up convergence (empirical observation)
- Computational savings: 1 to 2 orders of magnitude average
- However, very large CPU timings (over 27 hours for instance with 9 tasks on 3 processors, with compact linearization — 105 hours with usual linearization)
- Experiments carried out on PIV 2.66GHz 1GB RAM
- Limited usefulness

Simple example again

Instance:
$$D = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

i	1	2	3	4	5
L_i	2	3	5	8	4

Simple example: solution

Optimal solution: makespan=20

Packing formulation I

- Consider a "big rectangle" $T_{max} \times |P|$, where T_{max} is an upper bound for the makespan
- **•** Task *j* represented by a rectangular strip $L_j \times 1$
- Idea: pack strips into big rectangle
- We get much more efficient formulation

Packing formulation II

- Indices and parameters as above
- Variables:

 $t_j \ge 0$: starting time of task $j \forall j \in V$ $y_j \in \mathbb{Z}_+$: processor ID where task *j* is executed $\forall j \in V$ $z_{jk} \in \{0,1\} : \left\{ \begin{array}{cc} 1 & \text{task } j \text{ assigned to proc. } k \\ 0 & \text{otherwise} \end{array} \right\} \begin{array}{c} \forall \ j \in V, \\ \forall \ k \in P \end{array}$ $\sigma_{ij} \in \{0,1\} : \left\{ \begin{array}{ll} 1 & \text{task } i \text{ finishes before } j \text{ starts} \\ 0 & \text{otherwise} \end{array} \right\} \forall i, j \in V$ $\epsilon_{ij} \in \{0,1\} : \left\{ \begin{array}{ll} 1 & \mathsf{PID of task} \ i < \mathsf{PID of task} \ j \\ 0 & \mathsf{otherwise} \end{array} \right\} \forall \ i,j \in V$

Packing formulation II

Minimize makespan

 $\min\max_{j\in V}\{t_j+L_j\}$

Relative positioning possibilities

$$\sigma_{ij} + \sigma_{ji} + \epsilon_{ij} + \epsilon_{ji} \geq 1 \quad \forall i \neq j \in V$$

$$\sigma_{ij} + \sigma_{ji} \leq 1 \land \epsilon_{ij} + \epsilon_{ji} \leq 1 \quad \forall i \neq j \in V$$

• Constrain starting times if task i finishes before j starts

$$t_j \ge t_i + L_i - (1 - \sigma_{ij})T_{\max} \quad \forall \ i \ne j \in V$$

• Constrain PIDs if task j has larger PID than i

$$y_j \ge y_i + 1 - (1 - \epsilon_{ij})|P| \quad \forall i \ne j \in V$$

Packing formulation III

Task precendences

$$\sigma_{ij} = 1 \quad \forall j \in V, i : (i, j) \in A$$

Assignments and relations between PIDs and assignment variables

$$\sum_{k \in P} z_{ik} = 1 \quad \land \quad \sum_{k \in P} k z_{ik} = y_i \quad \forall i \in V$$

Communication delays

$$t_j \ge t_i + L_i + \sum_{k,l \in P} \gamma_{ij}^{kl} z_{ik} z_{jl} \quad \forall j \in V, i : (i,j) \in A$$

Packing formulation IV

- Variables: from 3 indices to 2 (linearization variables: from 6 indices to 4)
- Expect reduction in CPU time of at least $O(|P|^2)$
- Expect compact linearization to make a difference over usual linearization for dense precedence graphs
- Average CPU time reduction factor: 5000 (much better than $O(|P|^2)$ in our examples)
- Found solutions to medium-scale MSPCD instances in reasonable time
- Compact linearization is beneficial only for dense precedence graphs

Conclusions and Future work

- Presented two formulations for MSPCD
- Packing formulation much tighter than classic formulation
- Compact linearization always beneficial in classic formulation, but only beneficial for dense graphs in packing formulation
- Formulation-based solution approach feasible for medium-scale MSPCD instances
- Ongoing and future work: additional valid cuts and combinatorial branch-and-bound