Lot streaming et pegging pour l'intégration de la planification de production et de l'ordonnancement

Anna Robert Claude Le Pape, Francis Sourd

ILOG S.A. Laboratoire d'Informatique de Paris VI (LIP6)

GOThA - 1er juillet 2005

- Définition du problème et approche envisagée
 - Planification de production et ordonnancement
 - Lot streaming et pegging
 - Intérêts pratiques de l'approche

- 1 Définition du problème et approche envisagée
 - Planification de production et ordonnancement
 - Lot streaming et pegging
 - Intérêts pratiques de l'approche
- 2 Modélisation par un programme linéaire en nombres entiers (PLNE)
 - Contraintes de lot streaming et de pegging
 - Approximation des contraintes de ressources
 - Liaison des variables
 - Fonction objectif

- 1 Définition du problème et approche envisagée
 - Planification de production et ordonnancement
 - Lot streaming et pegging
 - Intérêts pratiques de l'approche
- 2 Modélisation par un programme linéaire en nombres entiers (PLNE)
 - Contraintes de lot streaming et de pegging
 - Approximation des contraintes de ressources
 - Liaison des variables
 - Fonction objectif
- 3 Etude expérimentale et analyse
 - Benchmark testé
 - Méthodes comparées et indicateurs
 - Résultats numériques

- 1 Définition du problème et approche envisagée
 - Planification de production et ordonnancement
 - Lot streaming et pegging
 - Intérêts pratiques de l'approche
- 2 Modélisation par un programme linéaire en nombres entiers (PLNE)
 - Contraintes de lot streaming et de pegging
 - Approximation des contraintes de ressources
 - Liaison des variables
 - Fonction objectif
- 3 Etude expérimentale et analyse
 - Benchmark testé
 - Méthodes comparées et indicateurs
 - Résultats numériques
- 4 Conclusion et perspectives

Références bibliographiques

Intégration planification et ordonnancement

- Dauzère-Pérès and Lasserre, 1994, An Integrated Approach in Production Planning and Scheduling
- Timpe, 2002, Solving Planning and Scheduling Problems with Combined Integer and Constraint Programming
- Maravelias and Grossmann, 2005, An Hybrid MILP/CP Decomposition Approach for the Continuous Time Scheduling of Multipurpose Batch Plants

Lot streaming

- Baker and Jia, 1993, A comparative study of lot streaming procedures
- Trietsch and Baker, 1993, Basic techniques for lot streaming
- Dauzère-Pérès and Lasserre, 1997, Lot streaming in job-shop scheduling

Références bibliographiques

Intégration planification et ordonnancement

- Dauzère-Pérès and Lasserre, 1994, An Integrated Approach in Production Planning and Scheduling
- Timpe, 2002, Solving Planning and Scheduling Problems with Combined Integer and Constraint Programming
- Maravelias and Grossmann, 2005, An Hybrid MILP/CP Decomposition Approach for the Continuous Time Scheduling of Multipurpose Batch Plants

Lot streaming

- Baker and Jia, 1993, A comparative study of lot streaming procedures
- Trietsch and Baker, 1993, Basic techniques for lot streaming
- Oauzère-Pérès and Lasserre, 1997, Lot streaming in job-shop scheduling

Problématique globale

Planification de la production

- production planifiée par période
- satisfaction des demandes planifiée par période
- o niveau d'inventaires planifié par période

Planification et ordonnancement

Problématique globale

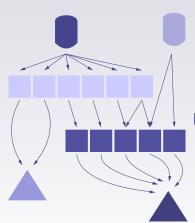
Problématique globale

Planification de la production

- production planifiée par période
- satisfaction des demandes planifiée par période
- niveau d'inventaires planifié par période

Lot streaming et pegging

- lots de production : taille et indications temporelles
- arcs de pegging reliant inventaires, lots et demandes



Planification et ordonnancement

ot streaming et pegging ntérêts de l'approche

Problématique globale

lots de production

arcs de pegging

Problématique globale

Planification de la production

- production planifiée par période
- satisfaction des demandes planifiée par période
- o niveau d'inventaires planifié par période

Lot streaming et pegging

- lots de production : taille et indications temporelles
- arcs de pegging reliant inventaires, lots et demandes

Ordonnancement des lots

- dates de début et de fin d'exécution de chaque lot
- affectation de ressource pour l'exécution de chaque lot

Problématique globale

Planification de la production

- production planifiée par période
- satisfaction des demandes planifiée par période
- niveau d'inventaires planifié par période

Lot streaming et pegging

- lots de production : taille et indications temporelles
- arcs de pegging reliant inventaires, lots et demandes

Ordonnancement des lot

- dates de début et de fin d'exécution de chaque lot
- affectation de ressource pour l'exécution de chaque lot

Couplage du lot streaming et du pegging

Lot streaming

⇒ découper la production planifiée pour chaque recette en lots dont on doit déterminer la taille afin de respecter les décisions de la planification

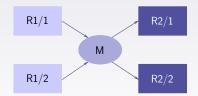
Pegging

⇒ décider explicitement des flux de matériaux circulant entre l'inventaire, les lots de production et les demandes

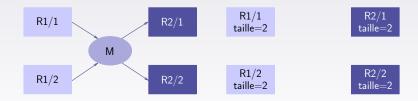
Couplage du lot streaming et du pegging

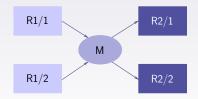
Lot streaming

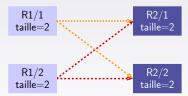
⇒ découper la production planifiée pour chaque recette en lots dont on doit déterminer la taille afin de respecter les décisions de la planification


Pegging

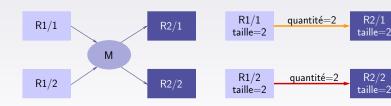
⇒ décider explicitement des flux de matériaux circulant entre l'inventaire, les lots de production et les demandes

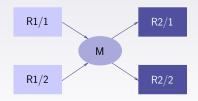

- 2 recettes R1 et R2, découpées chacune en 2 lots : R1/1, R1/2, et R2/1, R2/2
- 1 matériau M produit par R1 et consommé par R2

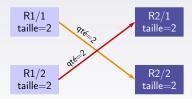

- 2 recettes R1 et R2, découpées chacune en 2 lots : R1/1, R1/2, et R2/1, R2/2
- 1 matériau M produit par R1 et consommé par R2



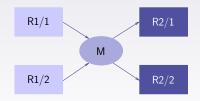
- 2 recettes R1 et R2, découpées chacune en 2 lots : R1/1, R1/2, et R2/1, R2/2
- 1 matériau M produit par R1 et consommé par R2

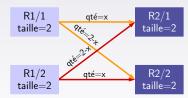



- 2 recettes R1 et R2, découpées chacune en 2 lots : R1/1, R1/2, et R2/1, R2/2
- 1 matériau M produit par R1 et consommé par R2



- 2 recettes R1 et R2, découpées chacune en 2 lots : R1/1, R1/2, et R2/1, R2/2
- 1 matériau M produit par R1 et consommé par R2





- 2 recettes R1 et R2, découpées chacune en 2 lots : R1/1, R1/2, et R2/1, R2/2
- 1 matériau M produit par R1 et consommé par R2

Pegging: optimisation

Affectation d'un délai Δt sur chaque arc créé modélisant la différence temporelle entre :

- (1) l'instant d'exécution du lot prédécesseur et celui du lot successeur $\stackrel{\Delta t \geq 0}{=}$
- (2) l'instant d'exécution du lot prédécesseur et la date de livraison de la demande $\triangle^{\Delta t \in \mathbb{R}}$

⇒ Minimisation de la somme sur tous les arcs des délais internes (1) et d'avance-retard (2) multipliés par la quantité de produit circulant sur l'arc (borne supérieure)

Pegging: optimisation

Affectation d'un délai Δt sur chaque arc créé modélisant la différence temporelle entre :

- (1) l'instant d'exécution du lot prédécesseur et celui du lot successeur
- (2) l'instant d'exécution du lot prédécesseur et la date de livraison de la demande $\Delta t \in \mathbb{R}$

⇒ Minimisation de la somme sur tous les arcs des délais internes (1) et d'avance-retard (2) multipliés par la quantité de produit circulant sur l'arc (borne supérieure)

Intérêts pratiques du pegging

Apports opérationnels

- déterminer des précédences temporelles entre les lots de production, pour contraindre le problème d'ordonnancement
- assurer que la production précède la consommation sans avoir recours à l'ajout de contraintes coûteuses en temps de calcul (mauvaise propagation), pour alléger le moteur d'ordonnancement
 - ⇒ accélérer la recherche de l'ordonnancement

Apports informatifs

- faciliter le contrôle des inventaires à tout instant dans le moteur d'ordonnancement
- décider à l'avance des flux de matériaux : information et réactivité

Intérêts pratiques du pegging

Apports opérationnels

- déterminer des précédences temporelles entre les lots de production, pour contraindre le problème d'ordonnancement
- assurer que la production précède la consommation sans avoir recours à l'ajout de contraintes coûteuses en temps de calcul (mauvaise propagation), pour alléger le moteur d'ordonnancement
 - ⇒ accélérer la recherche de l'ordonnancement

Apports informatifs

- faciliter le contrôle des inventaires à tout instant dans le moteur d'ordonnancement
- décider à l'avance des flux de matériaux : information et réactivité

Intérêts d'une résolution simultanée

- quantité de production ciblée par rapport aux demandes (lot pour lot)
- limitation de la production en avance due à une trop grande quantité produite
- limitation du stockage pour les mêmes raisons

Inconvénient :

Le problème résultant est très complexe et très combinatoire

Intérêts d'une résolution simultanée

- quantité de production ciblée par rapport aux demandes (lot pour lot)
- limitation de la production en avance due à une trop grande quantité produite
- limitation du stockage pour les mêmes raisons

Inconvénient :

Le problème résultant est très complexe et très combinatoire

Lot streaming: taille des lots

- bornes inférieure et supérieure : (1) et (2)
- cas facultatifs des tailles constantes : (3), (4) et (5)

$$\forall r \in \mathcal{R}ec, \forall j \in \{1, \dots, max_r\}, \qquad q_{rj} \ge \underline{LS}_r \times x_{rj}$$
 (1)

$$q_{rj} \leq \overline{LS}_r \times x_{rj} \tag{2}$$

* cas des tailles de lot constante :

$$\forall r \in \mathcal{R}ec,$$
 $q_r = Q_r + \sum_{j=2}^{\max_r} \left(\left(\frac{Q_r}{j} - \frac{Q_r}{j-1} \right) \times x_{rj} \right)$ (3)

$$\forall r \in \mathcal{R}ec, \forall j \in \{1, \dots, max_r\}, \qquad q_{rj} \ge q_r - \overline{LS}_r \times (1 - x_{rj})$$
 (4)

$$q_{rj} \le q_r \tag{5}$$

Lot streaming: taille des lots

- bornes inférieure et supérieure : (1) et (2)
- cas facultatifs des tailles constantes : (3), (4) et (5)

$$\forall r \in \mathcal{R}ec, \forall j \in \{1, \dots, max_r\}, \qquad q_{rj} \ge \underline{LS}_r \times x_{rj}$$
 (1)

$$q_{rj} \leq \overline{LS}_r \times x_{rj} \tag{2}$$

* cas des tailles de lot constante :

$$\forall r \in \mathcal{R}ec,$$
 $q_r = Q_r + \sum_{j=2}^{max_r} \left(\left(\frac{Q_r}{j} - \frac{Q_r}{j-1} \right) \times x_{rj} \right)$ (3)

$$\forall r \in \mathcal{R}ec, \forall j \in \{1, \dots, max_r\}, \qquad q_{rj} \ge q_r - \overline{LS}_r \times (1 - x_{rj})$$
 (4)

$$q_{rj} \le q_r \tag{5}$$

Pegging: production et consommation

- consommation et production de chaque lot : (6) et (7)
- niveau d'inventaire de chaque matériau : (8)
- satisfaction de chaque demande : (9)

$$\forall r \in \mathcal{R}ec, \forall j \in \{1, \dots, \max_r\}, \forall m \in \mathcal{C}_r, \quad Q_{lij}^m + \sum_{\substack{r' \in \mathcal{R}ec \setminus m \in \mathcal{P}_{L'}}} \sum_{j'=1}^{r'} Q_{r'j'ij}^m = \theta_r^m \times q_{rj} \quad (6)$$

$$\forall r \in \mathcal{R}ec, \forall j \in \{1, \dots, \max_r\}, \forall m \in \mathcal{P}_r, \quad Q^m_{rjl} + \sum_{\substack{r' \in \mathcal{R}ec \backslash \\ m \in \mathcal{C}_{r'}}} \sum_{\substack{j' = 1 \\ m \text{ requis} \\ \text{par } d}} Q^m_{rjr'j'} + \sum_{\substack{d \in \mathcal{D} \backslash \\ m \text{ requis} \\ \text{par } d}} Q_{rjd} = \theta^m_r \times q_{rj}$$

(7)

Pegging: production et consommation

- consommation et production de chaque lot : (6) et (7)
- niveau d'inventaire de chaque matériau : (8)
- satisfaction de chaque demande : (9)

$$\forall m \in \mathcal{M}, \sum_{\substack{r \in \mathcal{R}ec \backslash \\ m \in \mathcal{C}_r}} \sum_{j=1}^{\max_{r}} Q_{lrj}^m + \sum_{\substack{d \in \mathcal{D} \backslash \\ m \text{ req.} \\ \text{par } d}} Q_{ld} - \sum_{\substack{r \in \mathcal{R}ec \backslash \\ m \in \mathcal{P}_r}} \sum_{j=1}^{\max_{r}} Q_{rjl}^m = I_i^m - I_f^m \qquad (8)$$

$$\forall d \in \mathcal{D}, \quad Q_{ld} + \sum_{\substack{r \in \mathcal{R}ec \setminus \\ m, \text{ req.} \\ \mathsf{par} \ d. \in \mathcal{P}_r}} \sum_{j=1}^{\mathit{max}_r} Q_{rjd}^m = q_d \qquad (9)$$

Pegging: précédences temporelles

- précédence entre producteurs et consommateurs : (10)
- bornes inférieure et supérieure sur la date de fin des lots : (11)

$$\forall r \in \mathcal{R}ec, \forall j \in \{1, \dots, \textit{max}_r\}, \forall r' \in \mathcal{R}ec, \forall j' \in \{1, \dots, \textit{max}_{r'}\}, \forall \textit{m} \in \mathcal{P}_r \cap \mathcal{C}_{r'},$$

$$t_{rj} \leq t_{r'j'} - p_{r'j'} + (End - Start) \times \left(1 - X_{rjr'j'}^{m}\right)$$

$$\tag{10}$$

$$\forall r \in \mathcal{R}ec, \forall j \in \{1, \dots, max_r\}, \quad t_{rj} \geq Start + p_{rj}$$
 (11a)

$$\forall r \in \mathcal{R}ec, \forall j \in \{1, \dots, max_r\}, \quad t_{rj} \leq End$$
 (11b)

Pegging: précédences temporelles

- précédence entre producteurs et consommateurs : (10)
- bornes inférieure et supérieure sur la date de fin des lots : (11)

$$\forall r \in \mathcal{R}ec, \forall j \in \{1, \dots, \textit{max}_r\}, \forall r' \in \mathcal{R}ec, \forall j' \in \{1, \dots, \textit{max}_{r'}\}, \forall \textit{m} \in \mathcal{P}_r \cap \mathcal{C}_{r'},$$

$$t_{rj} \leq t_{r'j'} - p_{r'j'} + (End - Start) \times \left(1 - X_{rjr'j'}^{m}\right)$$

$$\tag{10}$$

$$\forall r \in \mathcal{R}ec, \forall j \in \{1, \dots, max_r\}, \quad t_{rj} \geq Start + p_{rj}$$
 (11a)

$$\forall r \in \mathcal{R}ec, \forall j \in \{1, \dots, \max_r\}, \quad t_{rj} \leq End$$
 (11b)

Capacités des ressources (approximation)

• utilisation d'une ressource par les lots d'une même recette : (12)

r req. res

• utilisation totale d'une ressource : (13)

$$\forall r \in \mathcal{R}ec, \forall res \in \mathcal{R}es \ \mathsf{tq} \ r \ \mathsf{utilise} \ res,$$

$$t_{r1} \geq Start + p_{r1} \times \frac{End - Start}{C_{res}}$$
 (12a)

$$\forall \textit{r} \in \mathcal{R}\textit{ec},, \forall \textit{res} \in \mathcal{R}\textit{es} \; \mathsf{tq} \; \textit{r} \; \mathsf{utilise} \; \textit{res}, \qquad \quad \forall \textit{j} \in \{1, \dots, \textit{max}_\textit{r}\},$$

$$t_{rj} \geq t_{rj-1} + (p_{rj} + \delta t_r^{res}) \times \frac{End - Start}{C_{res}}$$
 (12b)

$$\forall res \in \mathcal{R}es, \quad \sum_{r \in \mathcal{R}ec \setminus } \sum_{j=1}^{\max_{r}} p_{rj} \leq C_{res}$$
 (13)

Capacités des ressources (approximation)

• utilisation d'une ressource par les lots d'une même recette : (12)

r rea. res

• utilisation totale d'une ressource : (13)

$$\forall r \in \mathcal{R}ec, \forall res \in \mathcal{R}es \ \mathsf{tq} \ r \ \mathsf{utilise} \ res,$$

$$t_{r1} \geq Start + p_{r1} \times \frac{End - Start}{C_{res}}$$
 (12a)

$$\forall r \in \mathcal{R}\textit{ec}, , \forall \textit{res} \in \mathcal{R}\textit{es} \; \textit{tq} \; \textit{r} \; \textit{utilise} \; \textit{res}, \qquad \quad \forall j \in \{1, \dots, \textit{max}_r\},$$

$$t_{rj} \geq t_{rj-1} + (p_{rj} + \delta t_r^{res}) \times \frac{End - Start}{C_{res}}$$
 (12b)

$$\forall res \in \mathcal{R}es, \quad \sum_{r \in \mathcal{R}ec \setminus} \sum_{j=1}^{\max_r} p_{rj} \le C_{res}$$
 (13)

Contraintes de lot streaming et de peggins Contraintes de ressources Liaison des variables Fonction objectif

Contraintes artificielles de liaison

- rupture de symétrie dans la création des lots
- respect des décisions de planning
- liaison entre existence d'un arc de pegging et quantité en circulation
- liaison entre délai sur un arc de pegging et dates des lots et/ou des demandes

Contraintes de lot streaming et de peggins Contraintes de ressources Liaison des variables Fonction objectif

Contraintes artificielles de liaison

- o rupture de symétrie dans la création des lots
- respect des décisions de planning
- liaison entre existence d'un arc de pegging et quantité en circulation
- liaison entre délai sur un arc de pegging et dates des lots et/ou des demandes

Contraintes artificielles de liaison

- rupture de symétrie dans la création des lots
- respect des décisions de planning
- liaison entre existence d'un arc de pegging et quantité en circulation
- liaison entre délai sur un arc de pegging et dates des lots et/ou des demandes

Contraintes artificielles de liaison

- rupture de symétrie dans la création des lots
- respect des décisions de planning
- liaison entre existence d'un arc de pegging et quantité en circulation
- liaison entre délai sur un arc de pegging et dates des lots et/ou des demandes

Minimiser la somme des délais sur les arcs de pegging

Minimiser

$$\begin{split} & \sum_{r \in \mathcal{R}} \sum_{j=1}^{\max_{r}} \left(c_{r}^{prod_{f}} \times x_{rj} + c_{r}^{prod_{v}} \times q_{rj} \right) \\ & + \sum_{d \in \mathcal{D}} \sum_{\substack{r \in \mathcal{R} \setminus \\ m \text{ requis} \\ \text{par } d, \in \mathcal{P}_{r}}} \sum_{j=1}^{\max_{r}} \left(X_{rjd} \times t_{d} - Z_{rjd} \right)^{+} \times c_{d}^{retard} \times M_{rj}^{d} \\ & + \sum_{d \in \mathcal{D}} \sum_{\substack{r \in \mathcal{R} \setminus \\ m \text{ requis} \\ \text{par } d, \in \mathcal{P}_{r}}} \sum_{j=1}^{\max_{r}} \left(Z_{rjd} - X_{rjd} \times t_{d} \right)^{+} \times c_{d}^{avance} \times M_{rj}^{d} \\ & + \sum_{r \in \mathcal{R}} \sum_{j=1}^{\max_{r}} \sum_{r' \in \mathcal{R}} \sum_{j'=1}^{\max_{r'}} \sum_{m \in \mathcal{P}_{r} \cap \mathcal{C}_{r'}} \left(ZC_{rj'r'j'}^{m} - ZP_{rjr'j'}^{m} \right) \times c_{m}^{stock} \times M_{rj'r'j'}^{m} \end{split}$$

Minimiser la somme des délais sur les arcs de pegging

Minimiser

$$\begin{split} &\sum_{r \in \mathcal{R}} \sum_{j=1}^{\max_{r}} \left(c_{r}^{prod_{f}} \times x_{rj} + c_{r}^{prod_{v}} \times q_{rj} \right) \\ &+ \sum_{d \in \mathcal{D}} \sum_{\substack{r \in \mathcal{R} \backslash \\ m \text{ requis} \\ \text{par } d, \in \mathcal{P}_{r}}} \sum_{j=1}^{\max_{r}} \left(X_{rjd} \times t_{d} - Z_{rjd} \right)^{+} \times c_{d}^{retard} \times M_{rj}^{d} \\ &+ \sum_{d \in \mathcal{D}} \sum_{\substack{r \in \mathcal{R} \backslash \\ m \text{ requis} \\ \text{par } d, \in \mathcal{P}_{r}}} \sum_{j=1}^{\max_{r}} \left(Z_{rjd} - X_{rjd} \times t_{d} \right)^{+} \times c_{d}^{avance} \times M_{rj}^{d} \\ &+ \sum_{r \in \mathcal{R}} \sum_{j=1}^{\max_{r}} \sum_{\substack{r' \in \mathcal{R} \backslash \\ r' \in \mathcal{R}}} \sum_{j'=1}^{\max_{r'}} \sum_{m \in \mathcal{P}_{r} \cap \mathcal{C}_{s'}} \left(ZC_{rjr'j'}^{m} - ZP_{rjr'j'}^{m} \right) \times c_{m}^{stock} \times M_{rjr'j'}^{m} \end{split}$$

Minimiser la somme des délais sur les arcs de pegging

Minimiser

$$\begin{split} &\sum_{r \in \mathcal{R}} \sum_{j=1}^{\max_{r}} \left(c_{r}^{prod_{f}} \times x_{rj} + c_{r}^{prod_{V}} \times q_{rj} \right) \\ &+ \sum_{d \in \mathcal{D}} \sum_{\substack{r \in \mathcal{R} \setminus \\ m \text{ requis} \\ \text{par } d, \in \mathcal{P}_{r}}} \sum_{j=1}^{\max_{r}} \left(X_{rjd} \times t_{d} - Z_{rjd} \right)^{+} \times c_{d}^{retard} \times M_{rj}^{d} \\ &+ \sum_{d \in \mathcal{D}} \sum_{\substack{r \in \mathcal{R} \setminus \\ m \text{ requis} \\ \text{par } d, \in \mathcal{P}_{r}}} \sum_{j=1}^{\max_{r}} \left(Z_{rjd} - X_{rjd} \times t_{d} \right)^{+} \times c_{d}^{avance} \times M_{rj}^{d} \\ &+ \sum_{r \in \mathcal{R}} \sum_{j=1}^{\max_{r}} \sum_{r' \in \mathcal{R}} \sum_{j'=1}^{\max_{r'}} \sum_{m \in \mathcal{P}_{r} \cap \mathcal{C}_{s,r}} \left(ZC_{rjr'j'}^{m} - ZP_{rjr'j'}^{m} \right) \times c_{m}^{stock} \times M_{rjr'j'}^{m} \end{split}$$

Minimiser la somme des délais sur les arcs de pegging

$$\begin{split} &\sum_{r \in \mathcal{R}} \sum_{j=1}^{\max_{r}} \left(c_{r}^{prod_{f}} \times x_{rj} + c_{r}^{prod_{V}} \times q_{rj} \right) \\ &+ \sum_{d \in \mathcal{D}} \sum_{\substack{r \in \mathcal{R} \setminus \\ m \text{ requis} \\ \text{par } d, \in \mathcal{P}_{r}}} \sum_{j=1}^{\max_{r}} \left(X_{rjd} \times t_{d} - Z_{rjd} \right)^{+} \times c_{d}^{retard} \times M_{rj}^{d} \\ &+ \sum_{d \in \mathcal{D}} \sum_{\substack{r \in \mathcal{R} \setminus \\ m \text{ requis} \\ \text{par } d, \in \mathcal{P}_{r}}} \sum_{j=1}^{\max_{r}} \left(Z_{rjd} - X_{rjd} \times t_{d} \right)^{+} \times c_{d}^{avance} \times M_{rj}^{d} \\ &+ \sum_{r \in \mathcal{R}} \sum_{i=1}^{\max_{r}} \sum_{d \in \mathcal{P}} \sum_{i'=1}^{\max_{r}} \sum_{m \in \mathcal{P}_{r} \cap \mathcal{C}} \left(ZC_{rjr'j'}^{m} - ZP_{rjr'j'}^{m} \right) \times c_{m}^{stock} \times M_{rjr'j'}^{m} \end{split}$$

- 92 instances réparties en 4 classes selon le type de chaîne de production décrite
- 10 chaînes de production avec une ou plusieurs étapes de production
- entre 2 et 14 recettes, entre 10 et 90 demandes jusqu'à 30 ressources
- différentes prises en compte dans la planification et l'ordonnancement de pénalités d'avance, de retard et de coûts de production

- 92 instances réparties en 4 classes selon le type de chaîne de production décrite
- 10 chaînes de production avec une ou plusieurs étapes de production
- entre 2 et 14 recettes, entre 10 et 90 demandes jusqu'à 30 ressources
- différentes prises en compte dans la planification et l'ordonnancement de pénalités d'avance, de retard et de coûts de production

- 92 instances réparties en 4 classes selon le type de chaîne de production décrite
- 10 chaînes de production avec une ou plusieurs étapes de production
- entre 2 et 14 recettes, entre 10 et 90 demandes jusqu'à 30 ressources
- différentes prises en compte dans la planification et l'ordonnancement de pénalités d'avance, de retard et de coûts de production

- 92 instances réparties en 4 classes selon le type de chaîne de production décrite
- 10 chaînes de production avec une ou plusieurs étapes de production
- entre 2 et 14 recettes, entre 10 et 90 demandes jusqu'à 30 ressources
- différentes prises en compte dans la planification et l'ordonnancement de pénalités d'avance, de retard et de coûts de production

- 92 instances réparties en 4 classes selon le type de chaîne de production décrite
- 10 chaînes de production avec une ou plusieurs étapes de production
- entre 2 et 14 recettes, entre 10 et 90 demandes jusqu'à 30 ressources
- différentes prises en compte dans la planification et l'ordonnancement de pénalités d'avance, de retard et de coûts de production

planification \triangleright lot streaming + pegging \triangleright ordonnancement

- 92 instances réparties en 4 classes selon le type de chaîne de production décrite
- 10 chaînes de production avec une ou plusieurs étapes de production
- entre 2 et 14 recettes, entre 10 et 90 demandes jusqu'à 30 ressources
- différentes prises en compte dans la planification et l'ordonnancement de pénalités d'avance, de retard et de coûts de production

planification \triangleright lot streaming + pegging \triangleright ordonnancement

- 92 instances réparties en 4 classes selon le type de chaîne de production décrite
- 10 chaînes de production avec une ou plusieurs étapes de production
- entre 2 et 14 recettes, entre 10 et 90 demandes jusqu'à 30 ressources
- différentes prises en compte dans la planification et l'ordonnancement de pénalités d'avance, de retard et de coûts de production

Technique de référence et indicateurs de qualité

Résolution heuristique \mathcal{H}_e

- lot streaming: maximisation de la taille des lots (minimisation du nombre de lots)
- pegging : procédure gloutonne fondée sur un algorithme de tri
 - \Rightarrow Comparaison avec le programme mathématique \mathcal{P}_m

Critères comparés

- valeur de la solution finale pour l'ordonnancement
- valeur des différents termes de l'objectif de l'ordonnancement

Technique de référence et indicateurs de qualité

Résolution heuristique \mathcal{H}_e

- lot streaming: maximisation de la taille des lots (minimisation du nombre de lots)
- pegging : procédure gloutonne fondée sur un algorithme de tri
 - \Rightarrow Comparaison avec le programme mathématique \mathcal{P}_m

Critères comparés

- valeur de la solution finale pour l'ordonnancement
- valeur des différents termes de l'objectif de l'ordonnancement

Notations

- $\mathcal{P}_m > \mathcal{H}_e$ quand \mathcal{P}_m aboutit à une amélioration du critère considéré,
- $\mathcal{P}_m = \mathcal{H}_e$ quand \mathcal{P}_m et \mathcal{H}_e sont équivalentes,
- $\mathcal{P}_m < \mathcal{H}_e$ quand \mathcal{P}_m aboutit à une dégradation du critère.

$\overline{\mathcal{P}_m}$ vs. $\overline{\mathcal{H}_e}$: solutions finales de l'ordonnancement

Nombre d'instances		
$\mathcal{P}_m > \mathcal{H}_e$ $\mathcal{P}_m = \mathcal{H}_e$ $\mathcal{P}_m < \mathcal{H}_e$	46/92 (50.0%) 30/92 (32.6%) 16/92 (17.4%)	
% meilleure amélioration % plus mauvaise dégradation	40.76% 37.23%	
% amélioration moyenne	6.21%	

\mathcal{P}_m vs. \mathcal{H}_e : critères de la fonction objectif

	Production	Retard	Avance
$\mathcal{P}_m > \mathcal{H}_e$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/46 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 21/46 \text{ (45.7\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 25/46 \text{ (54.3\%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 41/46 \text{ (89.1%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/46 \text{ (0%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 5/46 \text{ (10.9%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 18/24 \text{ (75.0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/24 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 6/24 \text{ (25.0\%)}$
$\mathcal{P}_m=\mathcal{H}_e$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/30 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 30/30 \text{ (100\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 0/30 \text{ (0\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 0/30 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 30/30 \text{ (100\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 0/30 \text{ (0\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 0/14 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 14/14 \text{ (100\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 0/14 \text{ (0\%)}$
$\mathcal{P}_m < \mathcal{H}_e$	$\mathcal{P}_m > \mathcal{H}_e : 0/16 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 8/16 \text{ (50.0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 8/16 \text{ (50.0\%)}$	$\mathcal{P}_m > \mathcal{H}_e$: 3/16 (16.8%) $\mathcal{P}_m = \mathcal{H}_e$: 2/16 (12.5%) $\mathcal{P}_m < \mathcal{H}_e$: 11/16 (68.8%)	$\mathcal{P}_{m} > \mathcal{H}_{e} : 5/8 \text{ (62.5\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/8 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 3/8 \text{ (37.5\%)}$
Total	$\mathcal{P}_m > \mathcal{H}_e : 0/92 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 59/92 \text{ (64.1\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 33/92 \text{ (35.9\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 44/92 \text{ (47.8\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 32/92 \text{ (34.8\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 16/92 \text{ (17.4\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 23/46 \text{ (50.0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 14/46 \text{ (30.4\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 9/46 \text{ (19.7\%)}$

	Production	Retard	Avance
$\mathcal{P}_m > \mathcal{H}_e$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/46 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 21/46 \text{ (45.7\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 25/46 \text{ (54.3\%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 41/46 \text{ (89.1%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/46 \text{ (0%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 5/46 \text{ (10.9%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 18/24 \text{ (75.0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/24 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 6/24 \text{ (25.0\%)}$
$\mathcal{P}_m=\mathcal{H}_e$	$\mathcal{P}_m > \mathcal{H}_e : 0/30 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 30/30 \text{ (100\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 0/30 \text{ (0\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 0/30 \text{ (o\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 30/30 \text{ (100\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 0/30 \text{ (o\%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/14 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 14/14 \text{ (100\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 0/14 \text{ (0\%)}$
$\mathcal{P}_m < \mathcal{H}_e$	$P_m > \mathcal{H}_e : 0/16 \text{ (0\%)}$ $P_m = \mathcal{H}_e : 8/16 \text{ (50.0\%)}$ $P_m < \mathcal{H}_e : 8/16 \text{ (50.0\%)}$	$\mathcal{P}_m > \mathcal{H}_e$: 3/16 (16.8%) $\mathcal{P}_m = \mathcal{H}_e$: 2/16 (12.5%) $\mathcal{P}_m < \mathcal{H}_e$: 11/16 (68.8%)	$\mathcal{P}_{m} > \mathcal{H}_{e} : 5/8 \text{ (62.5\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/8 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 3/8 \text{ (37.5\%)}$
Total	$\mathcal{P}_m > \mathcal{H}_e : 0/92 \text{ (0%)}$ $\mathcal{P}_m = \mathcal{H}_e : 59/92 \text{ (64.1%)}$ $\mathcal{P}_m < \mathcal{H}_e : 33/92 \text{ (35.9%)}$	$\mathcal{P}_m > \mathcal{H}_e$: 44/92 (47.8%) $\mathcal{P}_m = \mathcal{H}_e$: 32/92 (34.8%) $\mathcal{P}_m < \mathcal{H}_e$: 16/92 (17.4%)	$\mathcal{P}_m > \mathcal{H}_e : 23/46 \text{ (50.0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 14/46 \text{ (30.4\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 9/46 \text{ (19.7\%)}$

\mathcal{P}_m vs. \mathcal{H}_e : critères de la fonction objectif

	Production	Retard	Avance
$\mathcal{P}_{m}>\mathcal{H}_{e}$	$\mathcal{P}_m > \mathcal{H}_e : 0/46 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 21/46 \text{ (45.7\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 25/46 \text{ (54.3\%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 41/46 \text{ (89.1\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/46 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 5/46 \text{ (10.9\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 18/24 \text{ (75.0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 0/24 \text{ (0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 6/24 \text{ (25.0\%)}$
$\mathcal{P}_m=\mathcal{H}_e$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/30 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 30/30 \text{ (100\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 0/30 \text{ (0\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 0/30 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 30/30 \text{ (100\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 0/30 \text{ (0\%)}$	$\begin{array}{c} \mathcal{P}_{m} > \mathcal{H}_{e} : \ 0/14 \ (0\%) \\ \mathcal{P}_{m} = \mathcal{H}_{e} : \ 14/14 \ (100\%) \\ \mathcal{P}_{m} < \mathcal{H}_{e} : \ 0/14 \ (0\%) \end{array}$
$\mathcal{P}_m < \mathcal{H}_e$	$\mathcal{P}_m > \mathcal{H}_e : 0/16 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 8/16 \text{ (50.0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 8/16 \text{ (50.0\%)}$	$\mathcal{P}_m > \mathcal{H}_e$: 3/16 (16.8%) $\mathcal{P}_m = \mathcal{H}_e$: 2/16 (12.5%) $\mathcal{P}_m < \mathcal{H}_e$: 11/16 (68.8%)	$\mathcal{P}_{m} > \mathcal{H}_{e} : 5/8 \text{ (62.5\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/8 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 3/8 \text{ (37.5\%)}$
Total	$\mathcal{P}_m > \mathcal{H}_e : 0/92 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 59/92 \text{ (64.1\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 33/92 \text{ (35.9\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 44/92 \text{ (47.8\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 32/92 \text{ (34.8\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 16/92 \text{ (17.4\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 23/46 \text{ (50.0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 14/46 \text{ (30.4\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 9/46 \text{ (19.7\%)}$

	Production	Retard	Avance
$\mathcal{P}_m > \mathcal{H}_e$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/46 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 21/46 \text{ (45.7\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 25/46 \text{ (54.3\%)}$	$\mathcal{P}_m > \mathcal{H}_e$: 41/46 (89.1%) $\mathcal{P}_m = \mathcal{H}_e$: 0/46 (0%) $\mathcal{P}_m < \mathcal{H}_e$: 5/46 (10.9%)	$\mathcal{P}_m > \mathcal{H}_e : 18/24 \text{ (75.0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 0/24 \text{ (0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 6/24 \text{ (25.0\%)}$
$\mathcal{P}_m=\mathcal{H}_e$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/30 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 30/30 \text{ (100\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 0/30 \text{ (0\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 0/30 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 30/30 \text{ (100\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 0/30 \text{ (0\%)}$	$\begin{array}{c} \mathcal{P}_{m} > \mathcal{H}_{e} : \ 0/14 \ (0\%) \\ \mathcal{P}_{m} = \mathcal{H}_{e} : \ 14/14 \ (100\%) \\ \mathcal{P}_{m} < \mathcal{H}_{e} : \ 0/14 \ (0\%) \end{array}$
$\mathcal{P}_m < \mathcal{H}_e$	$\mathcal{P}_m > \mathcal{H}_e : 0/16 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 8/16 \text{ (50.0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 8/16 \text{ (50.0\%)}$	$\mathcal{P}_m > \mathcal{H}_e$: 3/16 (16.8%) $\mathcal{P}_m = \mathcal{H}_e$: 2/16 (12.5%) $\mathcal{P}_m < \mathcal{H}_e$: 11/16 (68.8%)	$\mathcal{P}_{m} > \mathcal{H}_{e} : 5/8 \text{ (62.5\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/8 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 3/8 \text{ (37.5\%)}$
Total	$\mathcal{P}_m > \mathcal{H}_e : 0/92 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 59/92 \text{ (64.1\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 33/92 \text{ (35.9\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 44/92 \text{ (47.8\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 32/92 \text{ (34.8\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 16/92 \text{ (17.4\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 23/46 \text{ (50.0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 14/46 \text{ (30.4\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 9/46 \text{ (19.7\%)}$

	Production	Retard	Avance
$\mathcal{P}_m > \mathcal{H}_e$	$\mathcal{P}_m > \mathcal{H}_e : 0/46 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 21/46 \text{ (45.7\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 25/46 \text{ (54.3\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 41/46 \text{ (89.1\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 0/46 \text{ (0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 5/46 \text{ (10.9\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 18/24 \text{ (75.0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 0/24 \text{ (0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 6/24 \text{ (25.0\%)}$
$\mathcal{P}_m=\mathcal{H}_e$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/30 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 30/30 \text{ (100\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 0/30 \text{ (0\%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/30 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 30/30 \text{ (100\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 0/30 \text{ (0\%)}$	$\begin{array}{c} \mathcal{P}_{m} > \mathcal{H}_{e} : \ 0/14 \ (0\%) \\ \mathcal{P}_{m} = \mathcal{H}_{e} : \ 14/14 \ (100\%) \\ \mathcal{P}_{m} < \mathcal{H}_{e} : \ 0/14 \ (0\%) \end{array}$
$\mathcal{P}_m < \mathcal{H}_e$	$\mathcal{P}_m > \mathcal{H}_e : 0/16 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 8/16 \text{ (50.0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 8/16 \text{ (50.0\%)}$	$\mathcal{P}_m > \mathcal{H}_e$: 3/16 (16.8%) $\mathcal{P}_m = \mathcal{H}_e$: 2/16 (12.5%) $\mathcal{P}_m < \mathcal{H}_e$: 11/16 (68.8%)	$\mathcal{P}_{m} > \mathcal{H}_{e} : 5/8 \text{ (62.5\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/8 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 3/8 \text{ (37.5\%)}$
Total	$\mathcal{P}_m > \mathcal{H}_e : 0/92 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 59/92 \text{ (64.1\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 33/92 \text{ (35.9\%)}$	$\mathcal{P}_m > \mathcal{H}_e$: 44/92 (47.8%) $\mathcal{P}_m = \mathcal{H}_e$: 32/92 (34.8%) $\mathcal{P}_m < \mathcal{H}_e$: 16/92 (17.4%)	$\mathcal{P}_m > \mathcal{H}_e : 23/46 \text{ (50.0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 14/46 \text{ (30.4\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 9/46 \text{ (19.7\%)}$

	Production	Retard	Avance
$\mathcal{P}_m > \mathcal{H}_e$	$\begin{array}{c} \mathcal{P}_m > \mathcal{H}_e : 0/46 \; (0\%) \\ \mathcal{P}_m = \mathcal{H}_e : 21/46 \; (45.7\%) \\ \mathcal{P}_m < \mathcal{H}_e : 25/46 \; (54.3\%) \end{array}$	$\mathcal{P}_m > \mathcal{H}_e : 41/46 \text{ (89.1\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 0/46 \text{ (0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 5/46 \text{ (10.9\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 18/24 \text{ (75.0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 0/24 \text{ (0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 6/24 \text{ (25.0\%)}$
$\mathcal{P}_m=\mathcal{H}_e$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/30 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 30/30 \text{ (100\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 0/30 \text{ (0\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 0/30 \text{ (0\%)}$ $\frac{\mathcal{P}_m = \mathcal{H}_e : 30/30 \text{ (100\%)}}{\mathcal{P}_m < \mathcal{H}_e : 0/30 \text{ (0\%)}}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/14 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 14/14 \text{ (100\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 0/14 \text{ (0\%)}$
$\mathcal{P}_m < \mathcal{H}_e$	$\mathcal{P}_m > \mathcal{H}_e : 0/16 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 8/16 \text{ (50.0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 8/16 \text{ (50.0\%)}$	$\mathcal{P}_m > \mathcal{H}_e$: 3/16 (16.8%) $\mathcal{P}_m = \mathcal{H}_e$: 2/16 (12.5%) $\mathcal{P}_m < \mathcal{H}_e$: 11/16 (68.8%)	$\mathcal{P}_{m} > \mathcal{H}_{e} : 5/8 \text{ (62.5\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/8 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 3/8 \text{ (37.5\%)}$
Total	$\mathcal{P}_m > \mathcal{H}_e : 0/92 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 59/92 \text{ (64.1\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 33/92 \text{ (35.9\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 44/92 \text{ (47.8\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 32/92 \text{ (34.8\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 16/92 \text{ (17.4\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 23/46 \text{ (50.0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 14/46 \text{ (30.4\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 9/46 \text{ (19.7\%)}$

\mathcal{P}_m vs. \mathcal{H}_e : critères de la fonction objectif

	Production	Retard	Avance
$\mathcal{P}_m > \mathcal{H}_e$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/46 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 21/46 \text{ (45.7\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 25/46 \text{ (54.3\%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 41/46 \text{ (89.1%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/46 \text{ (0%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 5/46 \text{ (10.9%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 18/24 \text{ (75.0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/24 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 6/24 \text{ (25.0\%)}$
$\mathcal{P}_m=\mathcal{H}_e$	$\mathcal{P}_m > \mathcal{H}_e : 0/30 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 30/30 \text{ (100\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 0/30 \text{ (0\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 0/30 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 30/30 \text{ (100\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 0/30 \text{ (0\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 0/14 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 14/14 \text{ (100\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 0/14 \text{ (0\%)}$
$\mathcal{P}_m < \mathcal{H}_e$	$\mathcal{P}_m > \mathcal{H}_e : 0/16 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 8/16 \text{ (50.0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 8/16 \text{ (50.0\%)}$	$\mathcal{P}_m > \mathcal{H}_e$: 3/16 (16.8%) $\mathcal{P}_m = \mathcal{H}_e$: 2/16 (12.5%) $\mathcal{P}_m < \mathcal{H}_e$: 11/16 (68.8%)	$\mathcal{P}_{m} > \mathcal{H}_{e} : 5/8 \text{ (62.5\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/8 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 3/8 \text{ (37.5\%)}$
Total	$\mathcal{P}_m > \mathcal{H}_e : 0/92 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 59/92 \text{ (64.1\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 33/92 \text{ (35.9\%)}$	$\mathcal{P}_m > \mathcal{H}_e$: 44/92 (47.8%) $\mathcal{P}_m = \mathcal{H}_e$: 32/92 (34.8%) $\mathcal{P}_m < \mathcal{H}_e$: 16/92 (17.4%)	$\mathcal{P}_{m} > \mathcal{H}_{e} : 23/46 \text{ (50.0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 14/46 \text{ (30.4\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 9/46 \text{ (19.7\%)}$

	Production	Retard	Avance
$\mathcal{P}_m > \mathcal{H}_e$	$\mathcal{P}_m > \mathcal{H}_e : 0/46 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 21/46 \text{ (45.7\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 25/46 \text{ (54.3\%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 41/46 \text{ (89.1\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/46 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 5/46 \text{ (10.9\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 18/24 \text{ (75.0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 0/24 \text{ (0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 6/24 \text{ (25.0\%)}$
$\mathcal{P}_m=\mathcal{H}_e$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/30 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 30/30 \text{ (100\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 0/30 \text{ (0\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 0/30 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 30/30 \text{ (100\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 0/30 \text{ (0\%)}$	$\begin{array}{c} \mathcal{P}_{m} > \mathcal{H}_{e} : \ 0/14 \ (0\%) \\ \mathcal{P}_{m} = \mathcal{H}_{e} : \ 14/14 \ (100\%) \\ \mathcal{P}_{m} < \mathcal{H}_{e} : \ 0/14 \ (0\%) \end{array}$
$\mathcal{P}_m < \mathcal{H}_e$	$\mathcal{P}_m > \mathcal{H}_e : 0/16 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 8/16 \text{ (50.0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 8/16 \text{ (50.0\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 3/16 \text{ (16.8\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 2/16 \text{ (12.5\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 11/16 \text{ (68.8\%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 5/8 \text{ (62.5\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/8 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 3/8 \text{ (37.5\%)}$
Total	$\mathcal{P}_m > \mathcal{H}_e : 0/92 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 59/92 \text{ (64.1\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 33/92 \text{ (35.9\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 44/92 \text{ (47.8\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 32/92 \text{ (34.8\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 16/92 \text{ (17.4\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 23/46 \text{ (50.0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 14/46 \text{ (30.4\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 9/46 \text{ (19.7\%)}$

	Production	Retard	Avance
$\mathcal{P}_m > \mathcal{H}_e$	$\mathcal{P}_m > \mathcal{H}_e : 0/46 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 21/46 \text{ (45.7\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 25/46 \text{ (54.3\%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 41/46 \text{ (89.1\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/46 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 5/46 \text{ (10.9\%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 18/24 \text{ (75.0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/24 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 6/24 \text{ (25.0\%)}$
$\mathcal{P}_m=\mathcal{H}_e$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/30 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 30/30 \text{ (100\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 0/30 \text{ (0\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 0/30 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 30/30 \text{ (100\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 0/30 \text{ (0\%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/14 \ (0\%)$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 14/14 \ (100\%)$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 0/14 \ (0\%)$
$\mathcal{P}_m < \mathcal{H}_e$	$\mathcal{P}_m > \mathcal{H}_e : 0/16 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 8/16 \text{ (50.0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 8/16 \text{ (50.0\%)}$	$\mathcal{P}_m > \mathcal{H}_e$: 3/16 (16.8%) $\mathcal{P}_m = \mathcal{H}_e$: 2/16 (12.5%) $\mathcal{P}_m < \mathcal{H}_e$: 11/16 (68.8%)	$\mathcal{P}_{m} > \mathcal{H}_{e} : 5/8 \text{ (62.5\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/8 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 3/8 \text{ (37.5\%)}$
Total	$\begin{array}{c} \mathcal{P}_{m} > \mathcal{H}_{e}: \ 0/92 \ (0\%) \\ \mathcal{P}_{m} = \mathcal{H}_{e}: \ 59/92 \ (64.1\%) \\ \mathcal{P}_{m} < \mathcal{H}_{e}: \ 33/92 \ (35.9\%) \end{array}$	$\mathcal{P}_m > \mathcal{H}_e$: 44/92 (47.8%) $\mathcal{P}_m = \mathcal{H}_e$: 32/92 (34.8%) $\mathcal{P}_m < \mathcal{H}_e$: 16/92 (17.4%)	$\mathcal{P}_m > \mathcal{H}_e : 23/46 \text{ (50.0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 14/46 \text{ (30.4\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 9/46 \text{ (19.7\%)}$

\mathcal{P}_m vs. \mathcal{H}_e : critères de la fonction objectif

	Production	Retard	Avance
$\mathcal{P}_m > \mathcal{H}_e$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/46 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 21/46 \text{ (45.7\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 25/46 \text{ (54.3\%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 41/46 \text{ (89.1\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/46 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 5/46 \text{ (10.9\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 18/24 \text{ (75.0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 0/24 \text{ (0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 6/24 \text{ (25.0\%)}$
$\mathcal{P}_m=\mathcal{H}_e$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/30 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 30/30 \text{ (100\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 0/30 \text{ (0\%)}$	$\mathcal{P}_m > \mathcal{H}_e : 0/30 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 30/30 \text{ (100\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 0/30 \text{ (0\%)}$	$\mathcal{P}_{m} > \mathcal{H}_{e} : 0/14 \text{ (0\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 14/14 \text{ (100\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 0/14 \text{ (0\%)}$
$\mathcal{P}_m < \mathcal{H}_e$	$\mathcal{P}_m > \mathcal{H}_e : 0/16 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 8/16 \text{ (50.0\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 8/16 \text{ (50.0\%)}$	$\mathcal{P}_m > \mathcal{H}_e$: 3/16 (16.8%) $\mathcal{P}_m = \mathcal{H}_e$: 2/16 (12.5%) $\mathcal{P}_m < \mathcal{H}_e$: 11/16 (68.8%)	$\mathcal{P}_{m} > \mathcal{H}_{e} : 5/8 \text{ (62.5\%)}$ $\mathcal{P}_{m} = \mathcal{H}_{e} : 0/8 \text{ (0\%)}$ $\mathcal{P}_{m} < \mathcal{H}_{e} : 3/8 \text{ (37.5\%)}$
Total	$\mathcal{P}_m > \mathcal{H}_e : 0/92 \text{ (0\%)}$ $\mathcal{P}_m = \mathcal{H}_e : 59/92 \text{ (64.1\%)}$ $\mathcal{P}_m < \mathcal{H}_e : 33/92 \text{ (35.9\%)}$	$\mathcal{P}_m > \mathcal{H}_e$: 44/92 (47.8%) $\mathcal{P}_m = \mathcal{H}_e$: 32/92 (34.8%) $\mathcal{P}_m < \mathcal{H}_e$: 16/92 (17.4%)	$\begin{array}{c} \mathcal{P}_{m} > \mathcal{H}_{e}: 23/46 (50.0\%) \\ \mathcal{P}_{m} = \mathcal{H}_{e}: 14/46 (30.4\%) \\ \mathcal{P}_{m} < \mathcal{H}_{e}: 9/46 (19.7\%) \end{array}$

Conclusion

- Mise en évidence d'un problème à 2 composantes : lot streaming et pegging
- Etablissement d'un premier modèle sous forme d'un programme linéaire en variables mixtes
- Bonnes performances relativement à une résolution heuristique

- Poursuivre l'amélioration du modèle
- Augmenter le nombre de problèmes résolus et tester sur des cas issus d'industriels de la production
- Envisager une approche décomposée en 2 modèles coopératifs

Conclusion

- Mise en évidence d'un problème à 2 composantes : lot streaming et pegging
- Etablissement d'un premier modèle sous forme d'un programme linéaire en variables mixtes
- Bonnes performances relativement à une résolution heuristique

- Poursuivre l'amélioration du modèle
- Augmenter le nombre de problèmes résolus et tester sur des cas issus d'industriels de la production
- Envisager une approche décomposée en 2 modèles coopératifs

Conclusion

- Mise en évidence d'un problème à 2 composantes : lot streaming et pegging
- Etablissement d'un premier modèle sous forme d'un programme linéaire en variables mixtes
- Bonnes performances relativement à une résolution heuristique

- Poursuivre l'amélioration du modèle
- Augmenter le nombre de problèmes résolus et tester sur des cas issus d'industriels de la production
- Envisager une approche décomposée en 2 modèles coopératifs

Conclusion

- Mise en évidence d'un problème à 2 composantes : lot streaming et pegging
- Etablissement d'un premier modèle sous forme d'un programme linéaire en variables mixtes
- Bonnes performances relativement à une résolution heuristique

- Poursuivre l'amélioration du modèle
- Augmenter le nombre de problèmes résolus et tester sur des cas issus d'industriels de la production
- Envisager une approche décomposée en 2 modèles coopératifs

Conclusion

- Mise en évidence d'un problème à 2 composantes : lot streaming et pegging
- Etablissement d'un premier modèle sous forme d'un programme linéaire en variables mixtes
- Bonnes performances relativement à une résolution heuristique

- Poursuivre l'amélioration du modèle
- Augmenter le nombre de problèmes résolus et tester sur des cas issus d'industriels de la production
- Envisager une approche décomposée en 2 modèles coopératifs

Conclusion

- Mise en évidence d'un problème à 2 composantes : lot streaming et pegging
- Etablissement d'un premier modèle sous forme d'un programme linéaire en variables mixtes
- Bonnes performances relativement à une résolution heuristique

- Poursuivre l'amélioration du modèle
- Augmenter le nombre de problèmes résolus et tester sur des cas issus d'industriels de la production
- Envisager une approche décomposée en 2 modèles coopératifs

