Scheduling instructions on a hierarchical architecture

Florent Blachot, Guillaume Huard, Johnatan Pecero, **Erik Saule**, Denis Trystram

STMicroelectronics & LIG {Florent.Blachot, Guillaume.Huard, Johnatan.Pecero, Erik.Saule, Denis.Trystram}@imag.fr

GOTHA - 4 Avril 2008

GOTHA - 4 Avril 2008 1 / 26

2 The Scheduling Problem

3 Analysis

4 Experimental Validation

5 Conclusion

1 The ST200 Processor

2 The Scheduling Problem

3 Analysis

4 Experimental Validation

5 Conclusion

The ${\rm ST}200$ processor produced by STmicroelectronics, used in "set top box" such as DVD player. It has a not so common architecture.

Interested in scheduling instruction on this processor.

Figure: Current version of ST200

• The result of an operation on an ALU is immediately available on others

GOTHA - 4 Avril 2008 5 / 26

Figure: Current version of ST200

- The result of an operation on an ALU is immediately available on others
- The cost in silicon increases in the square of the number of ALU

The ST200 processor with Incomplete Bypass

Figure: Future revision of the ${\rm ST}200$ processor using an Incomplete Bypass

• The result of an operation on one ALU is immediately available on ALUs of the same cluster, but 2 time clocks later on other clusters

The ${\rm ST}200$ processor with Incomplete Bypass

Figure: Future revision of the ${\rm ST}200$ processor using an Incomplete Bypass

- The result of an operation on one ALU is immediately available on ALUs of the same cluster, but 2 time clocks later on other clusters
- The cost in silicon increases in the square of the number of ALU in a cluster and linearly in the number of clusters

6 / 26

How to compile a code for these architectures ? Mainly 2 problems:

- register allocation
- instruction scheduling

How to compile a code for these architectures ? Mainly 2 problems:

- register allocation
- instruction scheduling

Remark

On complete bypass system, the problem is $P_m \mid prec, p_j = 1 \mid C_{max}$. On incomplete bypass ?

1 The ST200 Processor

2 The Scheduling Problem

3 Analysis

4 Experimental Validation

5 Conclusion

- DAG G = (T, E) where T is a set of n unitary tasks.
- Processors are organized in *M* clusters of *m* processors. The *I*-th cluster is *H*_{*I*}.
- Solution : $\pi : T \to P$ and $\sigma : T \to \mathbb{N}^+$
- Between H_i and H_j $(i \neq j)$, ρ time units of delay
- Min C_{max}

The problem is denoted by $P_M(P_m)|prec, p_j = 1, c = (\rho, 0)|C_{max}$ [BGK03]

- DAG G = (T, E) where T is a set of n unitary tasks.
- Processors are organized in *M* clusters of *m* processors. The *I*-th cluster is *H*_{*I*}.
- Solution : $\pi : T \to P$ and $\sigma : T \to \mathbb{N}^+$
- Between H_i and H_j $(i \neq j)$, ρ time units of delay
- Min C_{max}

The problem is denoted by $P_M(P_m)|prec, p_j = 1, c = (\rho, 0)|C_{max}$ [BGK03]

Remark

The ST200 case is m = 3, M = 2, $\rho = 2$.

An Example

Complexity

 $P_M(P_m)|prec, p_j = 1, c = (\rho, 0)|C_{max}$ is NP-hard. The complexity of the sr200 case is not that obvious. It is at least as hard as $P3 \mid prec, p_j = 1 \mid C_{max}$ which is known to be an open problem.

Complexity

 $P_M(P_m)|prec, p_j = 1, c = (\rho, 0)|C_{max}$ is NP-hard. The complexity of the sT200 case is not that obvious. It is at least as hard as $P3 \mid prec, p_j = 1 \mid C_{max}$ which is known to be an open problem.

Approximability

 $P_2(P) \mid bipartite, p_j = 1, c = (1,0) \mid C_{max} = 3$ is NP-complete \Rightarrow no approximation algorithm with a performance ratio better than 4/3 [ABG02].

Complexity

 $P_M(P_m)|prec, p_j = 1, c = (\rho, 0)|C_{max}$ is NP-hard. The complexity of the sT200 case is not that obvious. It is at least as hard as $P3 \mid prec, p_j = 1 \mid C_{max}$ which is known to be an open problem.

Approximability

 $P_2(P) \mid bipartite, p_j = 1, c = (1,0) \mid C_{max} = 3$ is NP-complete \Rightarrow no approximation algorithm with a performance ratio better than 4/3 [ABG02].

List Scheduling with communication has a performance ratio of $2 - \frac{1}{mM} + \rho$

1 The ST200 Processor

2 The Scheduling Problem

3 Analysis

4 Experimental Validation

5 Conclusion

Definition

An idle at t is an IdleCP if all tasks scheduled after the idle time depend on a task scheduled at t.

Definition

An idle at t is an IdleCP if all tasks scheduled after the idle time depend on a task scheduled at t.

Definition

An idle at t is a communicationnal idle if all tasks scheduled after the idle time depend on a task scheduled before t and could not be scheduled on the idle.

Definition

An idle at t is an IdleCP if all tasks scheduled after the idle time depend on a task scheduled at t.

Definition

An idle at t is a communicationnal idle if all tasks scheduled after the idle time depend on a task scheduled before t and could not be scheduled on the idle.

Definition

An idle at t is an lateness idle if there exists a task released at t scheduled after t.

Proposition

A schedule without communicational idle and lateness idle on at least one cluster is $M + 1 - \frac{1}{m}$ optimal.

Proof.

sketch:

Two lower bounds.
$$\frac{n}{Mm}$$
 (work) and t_{∞} (critical path).
Such a schedule have $C_{\max} \leq \frac{n}{m} + t_{\infty}$.
Thus $C_{\max} \leq MC_{\max}^* + C_{\max}^*$.

Algo

Use List Scheduling on one cluster only.

Corollary

GSingle generates schedules without communicational and lateness idle. Thus it is $M + 1 - \frac{1}{m}$ optimal. In the ST200 case (M = 2 and m = 3), GSingle is $\frac{8}{3}$ optimal. (better than LS which is $\frac{23}{6}$)

Algo

Use List Scheduling on one cluster only.

Corollary

GSingle generates schedules without communicational and lateness idle. Thus it is $M + 1 - \frac{1}{m}$ optimal. In the ST200 case (M = 2 and m = 3), GSingle is $\frac{8}{3}$ optimal. (better than LS which is $\frac{23}{6}$)

Remark

It uses only $\frac{1}{M}$ of the computational power.

Principle

Let H_1 be the master cluster. Use List scheduling on H_1 . On other clusters H_i . Schedule a task on H_i only if it will be available on H_1 the next time.

If H_1 has a communicational idle, export the last task from H_i to H_1 .

Bound

Favorite Cluster generates schedules without communicational and lateness idle. It is a $M + 1 - \frac{1}{m}$ -approximation algorithm and the bound is tight.

Tightness

GOTHA - 4 Avril 2008 17 / 26

Another Approximation Ratio

Theorem

Favorite Cluster is a $2 + 2\rho - \frac{2\rho}{M} - \frac{1}{Mm}$ -approximation algorithm and the bound is tight.

Proof idea

Erik Saule (LIG)

Scheduling instructions on a hierarchical archi

GOTHA - 4 Avril 2008

18 / 26

- 1 The ST200 Processor
- 2 The Scheduling Problem

3 Analysis

4 Experimental Validation

5 Conclusion

Goal: compare GSingle, Favorite Cluster and List Scheduling. From [KA98], benchmarks for $P \mid prec \mid C_{max}$. Contains randomly generated graphs and **graphs extracted from a parallel compiler**. On Random graphs: Layered graphs.

Structured Graphs(LU)

Erik Saule (LIG)

Structured Graphs(Cholesky)

Erik Saule (LIG)

$$Z = C_{\max}^{FavoriteCluster} - C_{\max}^{LS}$$

Size	30	40	50	60	70	80	90	100	110
Z < 0	107	138	198	210	214	219	243	154	239
Z > 0	42	52	69	94	103	114	106	89	116
Z = 0	351	310	233	196	183	167	151	102	145

$$Z = C_{\max}^{FavoriteCluster} - C_{\max}^{LS}$$

Size	30	40	50	60	70	80	90	100	110
Z < 0	107	138	198	210	214	219	243	154	239
Z > 0	42	52	69	94	103	114	106	89	116
Z = 0	351	310	233	196	183	167	151	102	145
E[Z]	-0,232	-0,336	-0,602	-0,654	-0,794	-0,784	-1,036	-0,8841	-0,974
$\sigma[Z]$	0,9433	1,1343	1,6875	1,9187	2,2513	2,4314	2,9053	2,6474	2,7896
min(Z)	-5	-6	-10	-9	-11	-11	-16	-11	-15
max(Z)	3	2	3	5	4	6	5	4	7
$E[Z] \leq$	-0.1251	-0.2180	-0.4265	-0.4544	-0.5598	-0.5311	-0.7338	-0.6087	-0.6838
E[C ^{FavoriteCluster}]	10,554	13,422	15,712	17,61	19,304	21,706	23,108	25,3188	26,822

- 1 The ST200 Processor
- 2 The Scheduling Problem
- 3 Analysis
- 4 Experimental Validation

- Present a scheduling problem from the compiler community
- Define different Idle time
- Generalize List Scheduling for $P_M(P_m)|prec, p_j = 1, c = (\rho, 0)|C_{max}$
- Propose a heuristic with good behavior in practice

- Derive a better approximation algorithm (that grows with M)
 - FavoriteCluster does not use the UET assumption.
 - Task's in-degree is less than 2 (or equal).

- Derive a better approximation algorithm (that grows with M)
 - FavoriteCluster does not use the UET assumption.
 - Task's in-degree is less than 2 (or equal).
- ... or find some inapproximability bounds.

- Derive a better approximation algorithm (that grows with M)
 - FavoriteCluster does not use the UET assumption.
 - Task's in-degree is less than 2 (or equal).
- ... or find some inapproximability bounds.
- FavoriteCluster applies to cluster scheduling. Investigate it.

🔋 E Angel, E Bampis, and R Giroudeau.

Non-approximability results for the hierarchical communication problem with a bounded number of clusters.

In B. Monien and R. Feldmann, editors, *EuroPar' 02*, pages 217–224, 2002.

E. Bampis, R. Giroudeau, and J-C. König.

An approximation algorithm for the precedence constrained scheduling problem with hierarchical communications.

Theor. Comput. Sci., 290(3):1883–1895, 2003.

Y-K. Kwok and I. Ahmad.

Benchmarking the task graph scheduling algorithms. In *IPPS/SPDP*, pages 531–537, 1998.