
User Centered Scheduling for Multi-Users Systems

Erik Saule and Denis Trystram

INPG, LIG, Grenoble University
{firstname.lastname}@imag.fr

Gotha - Jan 2009
(accepted in IPDPS’09)

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 1 / 30



Motivation

Parallel systems with multiple users: SMPs, Clusters

Users submit tasks

A scheduler assigns tasks to processor and time

Which function should the scheduler intent to optimize ?

System centered objectives: min Makespan, min IdleTime

User centered objectives: min SumFlow, min MaxStrech

Do not take user’s wishes into account.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 2 / 30



Motivation

Parallel systems with multiple users: SMPs, Clusters

Users submit tasks

A scheduler assigns tasks to processor and time

Which function should the scheduler intent to optimize ?

System centered objectives: min Makespan, min IdleTime

User centered objectives: min SumFlow, min MaxStrech

Do not take user’s wishes into account.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 2 / 30



Motivation

Parallel systems with multiple users: SMPs, Clusters

Users submit tasks

A scheduler assigns tasks to processor and time

Which function should the scheduler intent to optimize ?

System centered objectives: min Makespan, min IdleTime

User centered objectives: min SumFlow, min MaxStrech

Do not take user’s wishes into account.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 2 / 30



Motivation

Parallel systems with multiple users: SMPs, Clusters

Users submit tasks

A scheduler assigns tasks to processor and time

Which function should the scheduler intent to optimize ?

System centered objectives: min Makespan, min IdleTime

User centered objectives: min SumFlow, min MaxStrech

Do not take user’s wishes into account.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 2 / 30



An example

Blue has a program to compile: Makespan

Green uses an interactive application: Maximum flow time

Red is running experiments: Sum of weighted completion time

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 3 / 30



An example

Blue has a program to compile: Makespan

Green uses an interactive application: Maximum flow time

Red is running experiments: Sum of weighted completion time

time

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 3 / 30



An example

Blue has a program to compile: Makespan

Green uses an interactive application: Maximum flow time

Red is running experiments: Sum of weighted completion time

timetime

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 3 / 30



Outline of the talk

1 Introduction

2 Model

3 Inapproximability

4 Approximation algorithms

5 Conclusion

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 4 / 30



Notations

Instance

k users

m processors

User u submits n(u) tasks

Task t
(u)
i of processing time p

(u)
i , belongs to u, released at r

(u)
i

Solution

Function π, processor allocation.

Function σ time allocation.

C
(u)
i is the completion time of t

(u)
i

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 5 / 30



Notations

Instance

k users

m processors

User u submits n(u) tasks

Task t
(u)
i of processing time p

(u)
i , belongs to u, released at r

(u)
i

Solution

Function π, processor allocation.

Function σ time allocation.

C
(u)
i is the completion time of t

(u)
i

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 5 / 30



Notations

Objective functions

Each user chooses an objective function among:

makespan: C
(u)
max = maxi C

(u)
i

sum of (weighted) completion time:
∑

C
(u)
i =

∑
i C

(u)
i

max flow time: F
(u)
max = maxi C

(u)
i − r

(u)
i

The Multi-User Scheduling Problem

The problem will be denoted by:

MUSP(k : Cmax) : all users are interested in the makespan

MUSP(k ′ :
∑

Ci ; k
′′ : Cmax) : k ′ users are interested in the sum of

completion time and k ′′ in the makespan

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 6 / 30



Notations

Objective functions

Each user chooses an objective function among:

makespan: C
(u)
max = maxi C

(u)
i

sum of (weighted) completion time:
∑

C
(u)
i =

∑
i C

(u)
i

max flow time: F
(u)
max = maxi C

(u)
i − r

(u)
i

The Multi-User Scheduling Problem

The problem will be denoted by:

MUSP(k : Cmax) : all users are interested in the makespan

MUSP(k ′ :
∑

Ci ; k
′′ : Cmax) : k ′ users are interested in the sum of

completion time and k ′′ in the makespan

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 6 / 30



Related Works: Linear Aggregation (Baker & Smith, 2003)

One machine. Two users. Investigate Cmax and
∑
ωiCi .

This is polynomial:

The tasks of a makespan user are merged into a single task which is
scheduled as a ’sum of completion time’ task.

Optimizing the sum of weighted completion time is polynomial
(WSPT).

Can be extended to more users by the same technique.
However:

Does not work with flowtime

Can not extend to several processors

Linear combination is bad.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 7 / 30



Related Works: Linear Aggregation (Baker & Smith, 2003)

One machine. Two users. Investigate Cmax and
∑
ωiCi .

This is polynomial:

The tasks of a makespan user are merged into a single task which is
scheduled as a ’sum of completion time’ task.

Optimizing the sum of weighted completion time is polynomial
(WSPT).

Can be extended to more users by the same technique.
However:

Does not work with flowtime

Can not extend to several processors

Linear combination is bad.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 7 / 30



Linear combination is unfair!

It is easy to construct instances of MUSP(2 :
∑

Ci ) where the Pareto set
is like:

0

5

10

15

20

25

0 5 10 15 20 25

pareto

Only two points can be reached. Both of them are unfair.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 8 / 30



Linear combination is not truthful!

For makespan users

Selecting the sum of completion time objective always leads to better
performance than selecting the makespan.

For sum of completion time users

Spliting tasks into two can help, even if it increases the total load.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 9 / 30



Objective Function

A bag-of-tasks objective function

In bag-of-tasks scheduling, several applications compete for the computing
resources. The common objective function is the (maximum or sum)

stretch : si =
Ci
pi

.

si is degradation factor for not being the only application in the system.

The Degradation objective function

Similarly, we define d (u)(S) = f (u)(S)

f (u)∗ , the degradation of user u for not
being the only user of the system.
The objective function is a norm of degradation (e.g.

∑
u d (u)(S), ...)

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 10 / 30



Optimizing Degradation

A difficult objective

Stretch based objective are difficult to tackle. Degradation are even worse.

The (reachable) lower bound on d (u)(S) = f (u)(S)

f (u)∗ is 1. However, f (u)∗ is
unknown.

Going multi-objective

An interesting property of norms is that they are monotone according to
the component wise order. The optimal solution for a norm is a Pareto
optimal solution of the (d (1), . . . , d (k)) multi-objective optimization
problem.
The (f (1), . . . , f (k)) multi-objective optimization problem is equivalent.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 11 / 30



Optimizing Degradation

A difficult objective

Stretch based objective are difficult to tackle. Degradation are even worse.

The (reachable) lower bound on d (u)(S) = f (u)(S)

f (u)∗ is 1. However, f (u)∗ is
unknown.

Going multi-objective

An interesting property of norms is that they are monotone according to
the component wise order. The optimal solution for a norm is a Pareto
optimal solution of the (d (1), . . . , d (k)) multi-objective optimization
problem.
The (f (1), . . . , f (k)) multi-objective optimization problem is equivalent.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 11 / 30



Related Works: Complexity (Agnetis et al. , 2004)

One machine. Two users.

Decision version

MUSP(2 :
∑

Ci ) is weakly NP-Complete

MUSP(2 : Cmax) and MUSP(1 : Cmax ; 1 :
∑

Ci ) are polynomial

MUSP(2 : Fmax), MUSP(1 : Fmax ; 1 :
∑

Ci ) and
MUSP(1 : Fmax ; 1 : Cmax) are polynomial

Thus, on a arbitrary number of processors. Everything is NP-Complete.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 12 / 30



Multi-Objective Approximation

Two kinds of approximation techniques

Zenith approximation : find a solution that approximates all
objectives at the same time

Pareto set approximation : find solutions that cover the Pareto set

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 13 / 30



Multi-Objective Approximation

f2

f1

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 14 / 30



Multi-Objective Approximation

Z

f2

f1

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 14 / 30



Multi-Objective Approximation

Z

≤ ρ2f2(Z )

≤ ρ1f1(Z )

f2

f1

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 14 / 30



Multi-Objective Approximation

f2(x)

f2(x)
ρ2

f1(x)
ρ1

f1(x)

f2

f1

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 14 / 30



Which approximation to choose ?

A Degradation is a ratio to the
optimal, given by the single
user case.
A Zenith approximation ratio
is an upper bound on
degradations.

Z

≤ ρ2f2(Z )

≤ ρ1f1(Z )

f2

f1

We study Zenith approximation.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 15 / 30



Outline

1 Introduction

2 Model

3 Inapproximability

4 Approximation algorithms

5 Conclusion

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 16 / 30



For MUSP(k : Cmax)

One machine

Each user has 1 task and chooses C
(u)
max

∀u, p(u)
1 = 1

⇒ ∀u,C (u)∗
max = 1

No other choices than:

time1 2 k

Theorem

No algorithm approximates MUSP(k : Cmax) better than (1, 2, . . . , k).

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 17 / 30



For MUSP(k : Cmax)

One machine

Each user has 1 task and chooses C
(u)
max

∀u, p(u)
1 = 1

⇒ ∀u,C (u)∗
max = 1

No other choices than:

time1 2 k

Theorem

No algorithm approximates MUSP(k : Cmax) better than (1, 2, . . . , k).

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 17 / 30



Inapproximability for MUSP(k :
∑

Ci)

One machine

Each user has x tasks and chooses
∑

C
(u)
i

∀u, ∀i , p(u)
i = 1

⇒ ∀u,
∑

C
(u)∗
i = x(x+1)

2

Over all the tasks,
∑

C ∗i =
∑kx

i=1 i = kx(kx+1)
2

A fair algorithm will not serve a user better than another one :

∀u,
∑

C
(u)
i = Cst.

Recall that,
∑

Ci =
∑

u

∑
C

(u)
i .∑

C
(u)
i ≥

P
C∗i
k = kx2+x

2

Theorem

No algorithm approximates MUSP(k :
∑

Ci ) better than (k, . . . , k).

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 18 / 30



Inapproximability for MUSP(k :
∑

Ci)

One machine

Each user has x tasks and chooses
∑

C
(u)
i

∀u, ∀i , p(u)
i = 1

⇒ ∀u,
∑

C
(u)∗
i = x(x+1)

2

Over all the tasks,
∑

C ∗i =
∑kx

i=1 i = kx(kx+1)
2

A fair algorithm will not serve a user better than another one :

∀u,
∑

C
(u)
i = Cst.

Recall that,
∑

Ci =
∑

u

∑
C

(u)
i .∑

C
(u)
i ≥

P
C∗i
k = kx2+x

2

Theorem

No algorithm approximates MUSP(k :
∑

Ci ) better than (k, . . . , k).

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 18 / 30



For MUSP(2 : Fmax)

One machine

2 users with x jobs

∀i and u, r
(u)
i = i − 1, p

(u)
i = 1

⇒ ∀u,F (u)∗
max = 1.

Let suppose a ρ approximated solution for user 1 (blue):

time
ρ ρ + x

F
(2)
max = x

Theorem

No algorithm approximates MUSP(2 : Fmax) within a constant factor.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 19 / 30



For MUSP(2 : Fmax)

One machine

2 users with x jobs

∀i and u, r
(u)
i = i − 1, p

(u)
i = 1

⇒ ∀u,F (u)∗
max = 1.

Let suppose a ρ approximated solution for user 1 (blue):

time
ρ ρ + x

F
(2)
max = x

Theorem

No algorithm approximates MUSP(2 : Fmax) within a constant factor.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 19 / 30



Outline

1 Introduction

2 Model

3 Inapproximability

4 Approximation algorithms

5 Conclusion

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 20 / 30



MUSP(k : Cmax)

multiCmax

Given a ρ-approximation algorithm for the single user case

For each user u, compute S (u) such as Cmax(S (u)) ≤ ρC (u)∗
max

Group tasks of each user u according to S (u)

Schedule them in increasing order of Cmax(S (u))

time≤ 2C
(2)
max≤ C

(1)
max ≤ 3C

(3)
max

Theorem

multiCmax is a (ρ, 2ρ, . . . , kρ)-approximation algorithm (for an unknown
order of users)

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 21 / 30



MUSP(k : Cmax)

multiCmax

Given a ρ-approximation algorithm for the single user case

For each user u, compute S (u) such as Cmax(S (u)) ≤ ρC (u)∗
max

Group tasks of each user u according to S (u)

Schedule them in increasing order of Cmax(S (u))

time≤ 2C
(2)
max≤ C

(1)
max ≤ 3C

(3)
max

Theorem

multiCmax is a (ρ, 2ρ, . . . , kρ)-approximation algorithm (for an unknown
order of users)

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 21 / 30



Distance to the Pareto Set

The Lex solution

Given an order of the users. Lex is a solution optimal for the first user,
optimal for the second under constraint that the first is optimal, and
recursively.
Lex(u) denotes the solution on the u first users.
By definition, Lex is Pareto-optimal.

The List solutions

Sort users according to the optimal makespan of their job.
Schedule all the jobs user one after the other with List Scheduling.

Properties

List can be worsened to match multiCmax: (2, . . . , 2k)-approximation

∀i ,Ci ≤
P

i′≤i pi′
m + (1− 1

m )pi [Graham 66]

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 22 / 30



Distance to the Pareto Set

The Lex solution

Given an order of the users. Lex is a solution optimal for the first user,
optimal for the second under constraint that the first is optimal, and
recursively.
Lex(u) denotes the solution on the u first users.
By definition, Lex is Pareto-optimal.

The List solutions

Sort users according to the optimal makespan of their job.
Schedule all the jobs user one after the other with List Scheduling.

Properties

List can be worsened to match multiCmax: (2, . . . , 2k)-approximation

∀i ,Ci ≤
P

i′≤i pi′
m + (1− 1

m )pi [Graham 66]

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 22 / 30



Distance to the Pareto Set

The Lex solution

Given an order of the users. Lex is a solution optimal for the first user,
optimal for the second under constraint that the first is optimal, and
recursively.
Lex(u) denotes the solution on the u first users.
By definition, Lex is Pareto-optimal.

The List solutions

Sort users according to the optimal makespan of their job.
Schedule all the jobs user one after the other with List Scheduling.

Properties

List can be worsened to match multiCmax: (2, . . . , 2k)-approximation

∀i ,Ci ≤
P

i′≤i pi′
m + (1− 1

m )pi [Graham 66]

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 22 / 30



Distance between Lex and List

Hypothesis

Each user u submits a fair amount of load:
∑

p
(u)
i > mC

(u)∗
max
2 .

Property

Idle(Lex(u)) < mC
(u)∗
max (by local improvement)

Lemma

∀u > 2, if C
(u−1)
max (Lex) < C

(u−2)
max (Lex) then C

(u)
max(Lex) > C

(u−2)
max (Lex)

(from the Hypothesis and Property)

Theorem

∀u,C (u)
max(List) ≤ (3− 1

m )C
(u)
max(Lex) (from Lemma and [Graham 66])

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 23 / 30



Distance between Lex and List

Hypothesis

Each user u submits a fair amount of load:
∑

p
(u)
i > mC

(u)∗
max
2 .

Property

Idle(Lex(u)) < mC
(u)∗
max (by local improvement)

Lemma

∀u > 2, if C
(u−1)
max (Lex) < C

(u−2)
max (Lex) then C

(u)
max(Lex) > C

(u−2)
max (Lex)

(from the Hypothesis and Property)

Theorem

∀u,C (u)
max(List) ≤ (3− 1

m )C
(u)
max(Lex) (from Lemma and [Graham 66])

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 23 / 30



Distance between Lex and List

Hypothesis

Each user u submits a fair amount of load:
∑

p
(u)
i > mC

(u)∗
max
2 .

Property

Idle(Lex(u)) < mC
(u)∗
max (by local improvement)

Lemma

∀u > 2, if C
(u−1)
max (Lex) < C

(u−2)
max (Lex) then C

(u)
max(Lex) > C

(u−2)
max (Lex)

(from the Hypothesis and Property)

Theorem

∀u,C (u)
max(List) ≤ (3− 1

m )C
(u)
max(Lex) (from Lemma and [Graham 66])

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 23 / 30



Distance between Lex and List

Hypothesis

Each user u submits a fair amount of load:
∑

p
(u)
i > mC

(u)∗
max
2 .

Property

Idle(Lex(u)) < mC
(u)∗
max (by local improvement)

Lemma

∀u > 2, if C
(u−1)
max (Lex) < C

(u−2)
max (Lex) then C

(u)
max(Lex) > C

(u−2)
max (Lex)

(from the Hypothesis and Property)

Theorem

∀u,C (u)
max(List) ≤ (3− 1

m )C
(u)
max(Lex) (from Lemma and [Graham 66])

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 23 / 30



MUSP(k :
∑

Ci)

On a single machine.

aggreg

Let S (u) be a schedule of user u’s jobs

Construct a schedule S of all the jobs in increasing order of C
(u)
i (S (u))

Theorem

Schedule S is such that ∀u, ∀i ≤ n(u),C
(u)
i (S) ≤ kC

(u)
i (S (u))

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 24 / 30



MUSP(k :
∑

Ci)

On a single machine.

aggreg

Let S (u) be a schedule of user u’s jobs

Construct a schedule S of all the jobs in increasing order of C
(u)
i (S (u))

Theorem

Schedule S is such that ∀u, ∀i ≤ n(u),C
(u)
i (S) ≤ kC

(u)
i (S (u))

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 24 / 30



MUSP(k :
∑

Ci) : extensions

Going to m processors

On several processors, the idea also works. Each processor is considered
individually. The same property holds.
Using SPT aggreg is a (k, k , . . . , k)-approximation algorithm for
MUSP(k :

∑
Ci )

Parametric

Given a vector λ such as
∑

u λu = 1, the algorithm can be changed to

schedule the tasks in increasing order of λuC
(u)
i (S (u))

The property becomes: Schedule S is such that

∀u,∀i ≤ n(u),C
(u)
i (S) ≤ kC

(u)
i (S(u))

λu

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 25 / 30



MUSP(k :
∑

Ci) : extensions

Going to m processors

On several processors, the idea also works. Each processor is considered
individually. The same property holds.
Using SPT aggreg is a (k, k , . . . , k)-approximation algorithm for
MUSP(k :

∑
Ci )

Parametric

Given a vector λ such as
∑

u λu = 1, the algorithm can be changed to

schedule the tasks in increasing order of λuC
(u)
i (S (u))

The property becomes: Schedule S is such that

∀u,∀i ≤ n(u),C
(u)
i (S) ≤ kC

(u)
i (S(u))

λu

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 25 / 30



MUSP(k ′ :
∑

Ci ; k
′′ : Cmax)

A first idea

Consider makespan users as sum of completion users. This leads to a
(k, k, . . . , k)-approximation algorithm
However, the tasks of makespan users are not totally ordered

Merge multiCmax and aggreg into multiMixed

Build a schedule S (Cmax ) for all the makespan users only using
multiCmax.
Build a schedule S (u) for each sum of completion time user u.
Apply aggreg with high priority for Cmax : λCmax

= k ′′

k and standard
priority the sum of completion users: λu = 1

k .

no (theoretical) overhead on the sum of completion time users

does not mix makespan users’ jobs

multiMixed is a (k, . . . , k, k
k ′′ ρ,

2k
k ′′ ρ, . . . , kρ)-approximation algorithm

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 26 / 30



MUSP(k ′ :
∑

Ci ; k
′′ : Cmax)

A first idea

Consider makespan users as sum of completion users. This leads to a
(k, k, . . . , k)-approximation algorithm
However, the tasks of makespan users are not totally ordered

Merge multiCmax and aggreg into multiMixed

Build a schedule S (Cmax ) for all the makespan users only using
multiCmax.
Build a schedule S (u) for each sum of completion time user u.
Apply aggreg with high priority for Cmax : λCmax

= k ′′

k and standard
priority the sum of completion users: λu = 1

k .

no (theoretical) overhead on the sum of completion time users

does not mix makespan users’ jobs

multiMixed is a (k, . . . , k, k
k ′′ ρ,

2k
k ′′ ρ, . . . , kρ)-approximation algorithm

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 26 / 30



MUSP(k ′ :
∑

Ci ; k
′′ : Cmax)

A first idea

Consider makespan users as sum of completion users. This leads to a
(k, k, . . . , k)-approximation algorithm
However, the tasks of makespan users are not totally ordered

Merge multiCmax and aggreg into multiMixed

Build a schedule S (Cmax ) for all the makespan users only using
multiCmax.
Build a schedule S (u) for each sum of completion time user u.
Apply aggreg with high priority for Cmax : λCmax

= k ′′

k and standard
priority the sum of completion users: λu = 1

k .

no (theoretical) overhead on the sum of completion time users

does not mix makespan users’ jobs

multiMixed is a (k, . . . , k, k
k ′′ ρ,

2k
k ′′ ρ, . . . , kρ)-approximation algorithm

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 26 / 30



Outline

1 Introduction

2 Model

3 Inapproximability

4 Approximation algorithms

5 Conclusion

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 27 / 30



To sum up

In general

Linear combination is bad !

A new metric has been proposed (norm of degradation)

Zenith Approximation

MUSP(k : Cmax):

no algorithm better than (1, 2, . . . , k).
multiCmax reaches (ρ, 2ρ, . . . , kρ).

MUSP(k :
∑

Ci ):

no algorithm better than (k , k , . . . , k).
aggreg reaches it.

MUSP(k ′ :
∑

Ci ; k
′′ : Cmax):

no known lower bound.
multiMixed (k , . . . , k , k

k′′ ρ,
2k
k′′ ρ, . . . , kρ).

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 28 / 30



To sum up

In general

Linear combination is bad !

A new metric has been proposed (norm of degradation)

Zenith Approximation

MUSP(k : Cmax):

no algorithm better than (1, 2, . . . , k).
multiCmax reaches (ρ, 2ρ, . . . , kρ).

MUSP(k :
∑

Ci ):

no algorithm better than (k , k , . . . , k).
aggreg reaches it.

MUSP(k ′ :
∑

Ci ; k
′′ : Cmax):

no known lower bound.
multiMixed (k , . . . , k , k

k′′ ρ,
2k
k′′ ρ, . . . , kρ).

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 28 / 30



Perspective

A new kind of analysis (zenith approximation + pareto set distance)

Currently given for a subset of MUSP(k : Cmax).

Should be generalized to the other objectives

Can this analysis be applied on different problems ?

Some problems

Flow time can not be tackled this way

Add more constraints such as precedence or rigid tasks

Extend to other objectives

Zenith approximation will be tough to adapt. Would Pareto set
approximation be easier ?

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 29 / 30



Thank You

Questions ?

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 30 / 30



Agnetis, A., Mirchandani, P. B., Pacciarelli, D., & Pacifici, A. 2004.
Scheduling Problems with Two Competing Agents.
Operations Research, 52(2), 229–242.

Baker, K., & Smith, J.C. 2003.
A Multiple-Criterion Model for Machine Scheduling.
Journal of Scheduling, 6, 7–16.

Erik Saule (LIG) Multi-User Scheduling Gotha - Jan 2009 30 / 30


	Introduction
	Model
	Inapproximability
	Approximation algorithms
	Conclusion

