JiT
preemptive
scheduling
around a
common due
date
Francis Sourd

Introduction

Defining the cost function Related works Problem definition

The commo due-date problem

Special easy case Algorithm

Complexity

Conclusion

Just-in-Time preemptive scheduling around a common due date

Francis Sourd

LIP6 CNRS - Université Paris 6

GOThA Paris - 15 avril 2005

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Preemption and JIT scheduling

JiT preemptive scheduling around a common due date

Francis Sourd

Introduction

Defining the cost function Related works Problem definition

The common due-date problem Special easy case Algorithm

Conclusion

- *n* operations (processing time p_i).
- Preemption is allowed.
- Find a one-machine schedule that minimize the total cost.
- How to define job costs to model the Just-in-Time philosophy?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Early-tardy completion

JiT preemptive scheduling around a common due date Francis Sourd

Introduction

Defining the cost function Related works Problem definition

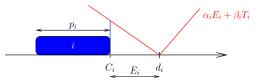
The common due-date problem Special easy case

Alequitient case

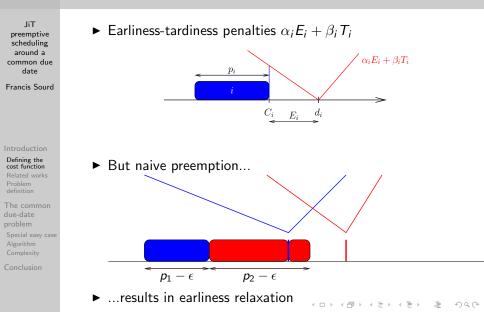
Complexity

Conclusion

• Earliness-tardiness penalties $\alpha_i E_i + \beta_i T_i$



Early-tardy completion



Position costs

JiT preemptive scheduling around a common due date

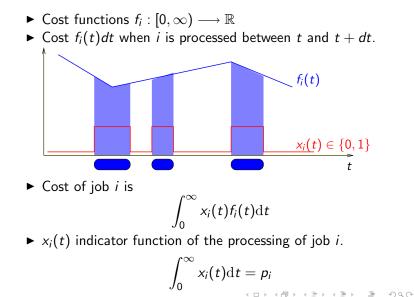
Francis Sourd

Introduction

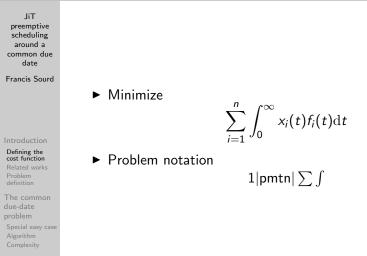
Defining the cost function Related works Problem definition

The common due-date problem Special easy case Algorithm

Conclusion



Objective function

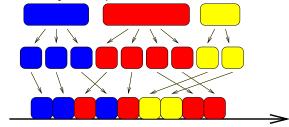


Conclusion

Preemption at integer time points

[Sourd and Kedad-Sidhoum, JoS 2003]

- ▶ interruption only at **integer** time points
- tasks divided into unit execution time operations
- ► costs c_{it} = ∫_t^{t+1} f_i(t)dt for scheduling a UET operation of job i in [t, t + 1)



► but the size of the relaxed problem is **pseudopolynomial**

preemptive scheduling around a common due date

JiT

Francis Sourd

Introduction

Defining the cost function

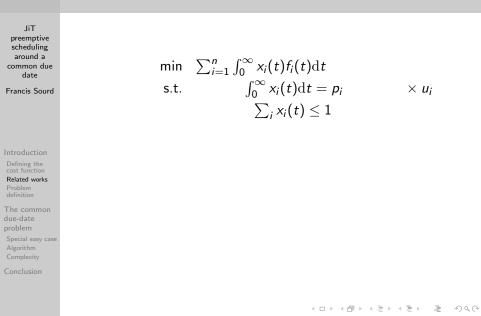
Related works Problem

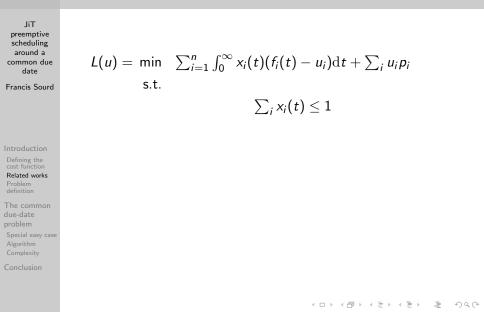
The commo due-date problem

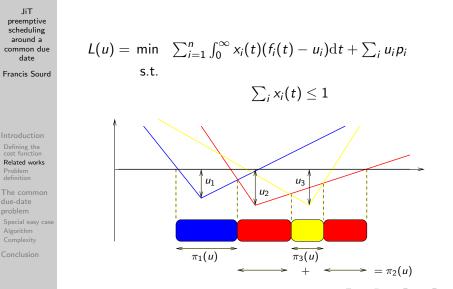
Special easy case Algorithm

Constantion

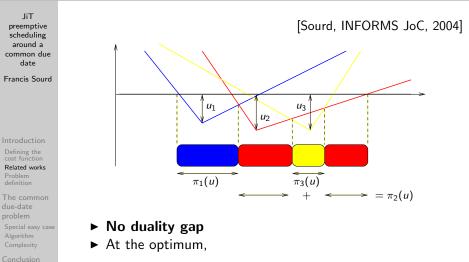
JiT preemptive scheduling around a common due date Francis Sourd	in .t.	$\sum_{i=1}^{n} \int_{0}^{\infty} x_{i}(t) f_{i}(t) \mathrm{d}t$ $\int_{0}^{\infty} x_{i}(t) \mathrm{d}t = p_{i}$ $\sum_{i} x_{i}(t) \leq 1$
Introduction Defining the cost function Related works Problem definition The common due-date problem Special easy case Algorithm Complexity Conclusion		
		<l< td=""></l<>







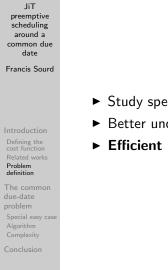
◆□ > ◆□ > ◆豆 > ◆豆 > ・ 豆 - ∽ へ ⊙



$$(\pi_1(u),\pi_2(u),\cdots,\pi_n(u))=(p_1,p_2,\cdots,p_n)$$

► Polynomial with the ellipsoid method $(\square) (\square)$

Motivation



Study special easier cases

- Better understanding of this new criterion
- Efficient strongly polynomial algorithms

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Today's problem

JiT preemptive scheduling around a common due date

Francis Sourd

Common due date *d* for each job
Cost function

ntroduction

Defining the cost function Related work

Problem definition

The common due-date problem Special easy case Algorithm

Conclusion

$$f_i(t) = lpha_i \max(0, d-t) + eta_i \max(0, t-d)$$

JiT preemptive scheduling around a common due date Francis Sourd

Introduction

Defining the cost function Related works Problem definition

The common due-date problem

Special easy case Algorithm Complexity

Conclusion

• $f_i(t) = \beta_i t$

► Larger slope first

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

JiT preemptive scheduling around a common due date

Francis Sourd

Defining the cost function Related works Problem definition

The common due-date problem

Special easy case Algorithm Complexity

Conclusion

• $f_i(t) = \beta_i t$

► Larger slope first

JiT preemptive scheduling around a common due date

Francis Sourd

Introduction

Defining the cost function Related works Problem definition

The common due-date problem

Special easy case Algorithm

Conclusion

- $f_i(t) = \beta_i t$
- ► Larger slope first

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

JiT preemptive scheduling around a common due date

Francis Sourd

Introduction

Defining the cost function Related works Problem definition

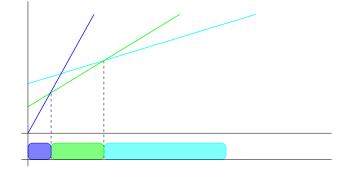
The common due-date problem

Special easy case Algorithm

Conclusion

• $f_i(t) = \beta_i t$

► Larger slope first



JiT preemptive scheduling around a common due date

Francis Sourd

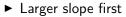
Introduction

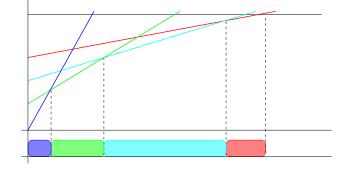
Defining the cost function Related works Problem definition

The common due-date problem

Special easy case Algorithm

Conclusion





Basic properties of the solution

JiT preemptive scheduling around a common due date

Francis Sourd

ntroduction

Defining the cost function Related works Problem definition

The common due-date problem Special easy ca Algorithm

Complexity

Conclusion

- ► An optimal schedule
 - starts at $t \leq d$
 - ends at $t + P \ge d$ with $P = \sum_i p_i$
 - no idle time in between the tasks
- the tardy parts of jobs are sorted according to the β_i
- the early parts of jobs are sorted according to the α_i

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Rationale of the algorithm

JiT preemptive scheduling around a common due date

Francis Sourd

Introduction

Defining the cost function Related works Problem definition

The common due-date problem

Special easy case Algorithm

Complexity

Conclusion

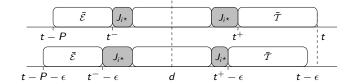
- ► Let f(t) be the optimal cost for scheduling all the jobs in [t, t + P)
- ► f is convex.
- ▶ Minimize the function *f* when *t* varies.
- Start with t = d (jobs are all late).
- ► Compute f(t ε) from f(t) by maintaining the primal and dual solutions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• End when the minimum of f is reached.

From f(t) to $f(t - \epsilon)$

Francis Sourd



Lemma

Introduction

Defining the cost function Related works Problem definition

The common due-date problem Special easy case

Algorithm Complexity

Conclusion

Only one job (i^{\star}) is transfered when t decreases.

Sketch of the proof.

- The jobs in $\overline{\mathcal{E}}$ are **completely** early.
- The jobs in $\bar{\mathcal{T}}$ are **completely** tardy.
- the dual variables of the job in between i^* do not change

Selecting the transfered job

JiT preemptive scheduling around a common due date

Francis Sourd

Introduction

Defining the cost function Related works Problem definition

The common due-date problem

Special easy case

Algorithm

Conclusion

The proof of the previous lemma shows how to select the transfered job according to the dual problem.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Selecting the transfered job

JiT preemptive scheduling around a common due date

Francis Sourd

Introduction

Defining the cost function Related works Problem definition

The common due-date problem

Special easy case

Algorithm

Conclusion

The proof of the previous lemma shows how to select the transfered job according to the dual problem.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► A primal approach computationally more efficient

Selecting the transfered job

JiT preemptive scheduling around a common due date

Francis Sourd

Introduction

Defining the cost function Related works Problem definition

The common due-date problem Special easy case Algorithm

Complexity

Conclusion

- The proof of the previous lemma shows how to select the transfered job according to the dual problem.
- ► A primal approach computationally more efficient
- Marginal transfer cost
 - ▶ if job *i* is transfered

$$f(t-\epsilon) = f(t) + m_i \epsilon + o(\epsilon)$$

- $m_i = \sum_j \min(\alpha_j, \alpha_i) p_j^- \min(\beta_j, \beta_i) p_j^+$
- Select the job with the smallest marginal transfer cost.
- The variation of m_i is (piecewise) linear.

$$m_i(t-\epsilon) = m_i(t) + (\min(\alpha_i, \alpha_{i^*}) + \min(\beta_i, \beta_{i^*})) \epsilon$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Events

JiT preemptive scheduling around a common due date

Francis Sourd

ntroduction

Defining the cost function Related works Problem definition

The common due-date problem Special easy case Algorithm Complexity

complexity

► Discretize the "continuous" procedure

- Classes of events
 - 1. Transfer if job i^* completed
 - 2. Another job becomes critical
 - 3. t = 0
 - 4. Minimum of f is reached
- As the variation of the marginal costs are linear, the distance between the current event and the next event can be easily computed.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Number of events

JiT preemptive scheduling around a common due date	
Francis Sourd	Lemma
	The transfer of a job can only be interrupted by a wholly late job.
Introduction	
Defining the cost function Related works Problem definition The common due-date problem Special easy case Algorithm Complexity Conclusion	Corollary
	There are $O(n)$ events.

<ロト < 団 > < 三 > < 三 > < 三 > への

Complexity

JiT preemptive scheduling around a common due date

Francis Sourd

Introduction

Defining the cost function Related works Problem definition

The common due-date problem Special easy case Algorithm Complexity

Conclusion

Theorem

The algorithm runs in $O(n^2)$ time.

Proof.

- There are O(n) events
- Marginal transfer costs are updated in O(n) time.

・ロト ・ 同ト ・ ヨト ・ ヨト

 \equiv

Sac

• Next event is calculated in O(n) time.

Conclusion

JiT preemptive scheduling around a common due date Francis Sourd

ntroduction

Defining the cost function Related works Problem definition

The common due-date problem Special easy case Algorithm Complexity

Conclusion

• An $O(n^2)$ algorithm for the common due date problem

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ► Release dates, deadlines ?
- ► Non common due dates ??
- ► Lower bound for the non-preemptive problem.