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Preemption and JIT scheduling

I n operations (processing time pi ).

I Preemption is allowed.

I Find a one-machine schedule that minimize the total
cost.

I How to define job costs to model the Just-in-Time
philosophy?
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Early-tardy completion

I Earliness-tardiness penalties αiEi + βiTi

Ei
diCi

αiEi + βiTi

pi

i

I But naive preemption...

p1 − ε p2 − ε

I ...results in earliness relaxation
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Position costs

I Cost functions fi : [0,∞) −→ R
I Cost fi (t)dt when i is processed between t and t + dt.

fi (t)

t

xi (t) ∈ {0, 1}

I Cost of job i is ∫ ∞

0
xi (t)fi (t)dt

I xi (t) indicator function of the processing of job i .∫ ∞

0
xi (t)dt = pi
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Objective function

I Minimize
n∑

i=1

∫ ∞

0
xi (t)fi (t)dt

I Problem notation
1|pmtn|

∑∫
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Preemption at integer time points

[Sourd and Kedad-Sidhoum, JoS 2003]

I interruption only at integer time points

I tasks divided into unit execution time operations

I costs cit =
∫ t+1
t fi (t)dt for scheduling a UET operation of

job i in [t, t + 1)

I but the size of the relaxed problem is pseudopolynomial
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Dual problem

L(u) =

min
∑n

i=1

∫∞
0 xi (t)fi (t)dt

+
∑

i uipi

s.t.
∫∞
0 xi (t)dt = pi

× ui

∑
i xi (t) ≤ 1

= π2(u)

u1
u2

u3

π1(u) π3(u)

+
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Dual problem

L(u) = min
∑n

i=1

∫∞
0 xi (t)(fi (t)− ui )dt +

∑
i uipi

s.t.

∫∞
0 xi (t)dt = pi × ui

∑
i xi (t) ≤ 1

= π2(u)

u1
u2

u3
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Dual problem

[Sourd, INFORMS JoC, 2004]

= π2(u)

u1
u2

u3

π1(u) π3(u)

+

I No duality gap
I At the optimum,

(π1(u), π2(u), · · · , πn(u)) = (p1, p2, · · · , pn)

I Polynomial with the ellipsoid method
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Motivation

I Study special easier cases

I Better understanding of this new criterion

I Efficient strongly polynomial algorithms
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Today’s problem

I Common due date d for each job

I Cost function

fi (t) = αi max(0, d − t) + βi max(0, t − d)
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No earliness — d = 0

I fi (t) = βi t

I Larger slope first
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Basic properties of the solution

I An optimal schedule
I starts at t ≤ d
I ends at t + P ≥ d with P =

∑
i pi

I no idle time in between the tasks

I the tardy parts of jobs are sorted according to the βi

I the early parts of jobs are sorted according to the αi
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Rationale of the algorithm

I Let f (t) be the optimal cost for scheduling all the jobs in
[t, t + P)

I f is convex.

I Minimize the function f when t varies.

I Start with t = d (jobs are all late).

I Compute f (t − ε) from f (t) by maintaining the primal and
dual solutions.

I End when the minimum of f is reached.
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From f (t) to f (t − ε)

t − P − ε

Ē

T̄

T̄

Ē

Ji?

Ji? Ji?

Ji?

d

t

t − εt+ − ε

t+t−

t− − ε

t − P

Lemma

Only one job (i?) is transfered when t decreases.

Sketch of the proof.

I The jobs in Ē are completely early.

I The jobs in T̄ are completely tardy.

I the dual variables of the job in between i? do not change
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Selecting the transfered job

I The proof of the previous lemma shows how to select the
transfered job according to the dual problem.

I A primal approach computationally more efficient
I Marginal transfer cost

I if job i is transfered

f (t − ε) = f (t) + miε + o(ε)

I mi =
∑

j min(αj , αi )p
−
j −min(βj , βi )p

+
j

I Select the job with the smallest marginal transfer cost.

I The variation of mi is (piecewise) linear.

mi (t − ε) = mi (t) + (min(αi , αi?) + min(βi , βi?)) ε
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Events

I Discretize the “continuous” procedure
I Classes of events

1. Transfer if job i? completed
2. Another job becomes critical
3. t = 0
4. Minimum of f is reached

I As the variation of the marginal costs are linear, the
distance between the current event and the next event can
be easily computed.
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Number of events

Lemma

The transfer of a job can only be interrupted by a wholly late
job.

Corollary

There are O(n) events.



JiT
preemptive
scheduling
around a

common due
date

Francis Sourd

Introduction

Defining the
cost function

Related works

Problem
definition

The common
due-date
problem

Special easy case

Algorithm

Complexity

Conclusion

Complexity

Theorem

The algorihm runs in O(n2) time.

Proof.

I There are O(n) events

I Marginal transfer costs are updated in O(n) time.

I Next event is calculated in O(n) time.
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Conclusion

I An O(n2) algorithm for the common due date problem

I Release dates, deadlines ?

I Non common due dates ??

I Lower bound for the non-preemptive problem.
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